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[bookmark: _Toc174020535]Introduction
Electromagnetics (EM) is a branch of electrical engineering or physics in which electric and magnetic phenomena are thoroughly studied by the analyzing of the interactions between electric charges at rest which is the “electricity” and electric charge at motion which is the “magnetism”. Electricity and magnetism are fundamental concepts that are widely used in our everyday lives in the field of electrical engineering. They have a strong correlation and rely heavily on one another. The existence of one is inseparable on the existence of the other. The terms electrostatic and electromagnetic are derived from the interplay between electricity and magnetism.
[image: ]
Figure ‎1‑1: Electricity and Magnetism
[bookmark: _Toc172137436]Electromagnetics principles find applications in diverse fields including electric machines (generators, transformers, and motors), antennas, microwaves, satellite communications, bioelectromagnetic, plasmas, nuclear research, fiber optics, electromagnetic interference and compatibility, electromechanical energy conversion, radar meteorology, and remote sensing. Electromagnetic devices include a wide range of equipment such as transformers, electric relays, radio and television systems, telephones, electric motors, transmission lines, waveguides, antennas, optical fibers, radars, and lasers. A comprehensive understanding of the laws and principles of electromagnetism is essential for designing these devices.

[bookmark: _Toc174020536]Maxwell’s equations
The subject of electromagnetics can be summarized in Maxwell’s equations below:







It is typical to indicate a vector by using a letter with an arrow on top, such as A ⃑ and B ⃑, or by using a letter in boldface type, such as A and B, in order to differentiate between a scalar and a vector in this assignment. 

A scalar is customary represented by a letter e.g., A, B, U, and V or .

[bookmark: _Toc172137437][bookmark: _Toc174020537]Electric charge 
It was found that there are two kinds of electric changes, positive charge which is the charge as that possessed by proton, and negative charge which is the charge as that possessed by electron and it was found that same kind of charge repel each other, while different kind of charges attract each other  
[image: Electric Charge - Definition, Types ...]
Figure ‎1‑2: Attraction and Repulsion of Electric Charges
Conservation principle of electric charge states that the charge on an isolated objects is conserved 

[image: Conservation of charge review (article ...]
Figure ‎1‑3: Conservation Principles of Electric Charge
Quantization principle of electric charge states that the charge is quantized, and its quantity equals an integer number multiplied by the basic charge which is the charge of electron




[bookmark: _Toc172137438][bookmark: _Toc174020538]Electrostatics
[image: Electrostatics. 3 Big Ideas What are the three basic types of particles you  find in a neutral atom? What are the three basic types of particles you  find. - ppt download]
Electrostatics is the examination of electromagnetic occurrences that happen when there are no charges in motion, specifically when a state of static equilibrium has been achieved. In other words, Electrostatics is a field of physics that focuses on the examination of stationary electric charges. The phrase "electrostatic" is derived from the combination of the terms "electro" and "static". "Electro" pertains to charges, while "static" refers to a motionless or resting condition. The electrostatic word is derived from the phenomena that two stationary charges experience either an attractive or repulsive force.
To start our examination of electrostatics, we will explore the two basic principles that regulate electrostatic fields: (1) Coulomb's law and (2) Gauss's law.
1.1 [bookmark: _Toc172137439][bookmark: _Toc174020539]Electrostatic Fields 

The electrostatic field refers to the area that surrounds a stationary electric charge and where the influence of the charge may be detected. A stationary charge, whether positive or negative, exerts an electric field in its surroundings. When another charge is introduced into this field, it will either be attracted towards or repelled away from the stationary charge.
1.1.1 [bookmark: _Toc172137440][bookmark: _Toc174020540]Coulomb’s Law and Electric Field Intensity
Coulomb's law says that the force between two-point charges,  and , is directed down the line connecting them the relationship is directly proportional to the product of the charges,  and  and varies inversely with the square of the distance R

[image: ]
Figure ‎2.1‑1: Coulombs Electrostatic Force between two-point charges
Where  is the proportionality constant   

However, if we have these two-point charges  and  in the xyz-space having position vectors  and  respectively  










[image: ]
Figure ‎2.1‑2: Two Point Charges in xyz-space
If we have more than two-point charges, we can use the principle of superposition to determine the force on a particular charge from the other charges. The concept asserts that the resultant force F on a charge Q situated at point r, due to N charges Q1, Q2, …QN placed at locations with position vectors r1, r2, …, rn, is obtained by summing up the vector forces imposed on Q by each of the charges Q1, Q2, …QN. Therefore:

To explain the effect of the electrostatic repulsive force, we shall assume two-point charges of equal mass m, charge Q are suspended at a common point by two threads of negligible mass and length . As shown below
[image: ]
Figure ‎2.1‑3: Equilibrium State for two-point charges suspended from one common point
At equilibrium, the total result force at each charge will be zero











From the right triangle in red 
	[image: ]
	








The electric field intensity, represented by , is the magnitude of the electrostatic force exerted on a unit charge when put in an electric field. It is aligned with the direction of the force  and is measured in newtons per coulomb or volts per meter. The electric field strength at point r, caused by a point charge placed at r', is expressed as



The concept of superposition allows us to calculate the total force acting on a specific charge when there are several point charges present. The concept asserts that if there are N charges denoted as Q1, Q2, ...The electric field intensity, denoted as E, acting on a charge Q positioned at position vector r, is the vector sum of the forces exerted on Q by each of the charges Q1, Q2, ..., QN, which are placed at places with position vectors r1, r2, ..., rn, respectively. Therefore:


1.1.2 [bookmark: _Toc172137441][bookmark: _Toc174020541]ELECTRIC FIELDS DUE TO CONTINUOUS CHARGE DISTRIBUTIONS

In addition to the point charge  which is a dimensionless charge, it is also possible to have continuous charge distribution and this distribution could be along a line, on a surface, or in a volume as illustrated in Figure below.
[image: A diagram of a surface charge

Description automatically generated]
Figure ‎2.1‑4:continuous charge distribution along a line, on a surface, and in a volume
It is customary to denote the line charge density   (in C/m), surface charge density  (in C/m2), and volume charge density  (in C/m3). These must not be confused with  (without subscript) used for radial distance in cylindrical coordinates system.

The charge element  and the total charge  due to above charge distributions are obtained using the integration principle






The electric field intensity due to each of the charge distributions , , and  may be regarded as the summation of the field contributed by the numerous point charges making up the charge distribution. Thus, by replacing  in eq. (4.11) with charge element  = , , or  and integrating, we get







1.1.2.1 [bookmark: _Toc172137442][bookmark: _Toc174020542] A line Charge 
Considering a line charge with uniform charge density  extending from point A to B along the z-axis as shown in Figure below. 
	[image: ]
	[image: ]


Figure ‎2.1‑5: Electric Field Intensity due to line charge
The charge element  associated with element  of the line is 

The total electric filed intensity  at observation point P which has a cartesian coordinate (x,y,z)  due to the linearly charged line can be found by the integration of the differential electric filed 












It is recommended that we transfer from cartesian coordinate to cylindrical coordinate as per transformation matrix 



 










Substituting above equations in E 








From the red triangle 
[image: ]


Differentiating both sides 






















Considering limits of integration 






As a special case, for an infinite line charge, point B is at (0, 0, ) and A at (0, 0, -) so
That, ; then the z-component vanishes, and eq. (4.20) becomes



1.1.2.2 [bookmark: _Toc172137443][bookmark: _Toc174020543]A Circular Ring Charge 

A circular ring of radius a carry a uniform linear charge density   C/m and is placed on the xy-plane ( or Z=0 plane ) with axis the same as the z-axis as shown below
	[image: ]
	



Figure ‎2.1‑6: Electric Field Intensity due to Circular Ring Charge
The total electric filed intensity  at observation point P (0,0,h) due to the linearly charged line can be found by the integration of the differential electric filed  







For cylindrical coordinate system 

 

Since the differential displacement vector is along 








It is recommended that we transfer from cartesian coordinate to cylindrical coordinate as per transformation matrix 




 










Substituting above equations in E 







Because of the symmetrical charge distribution, there exists a corresponding element 2 for every element 1. The contribution of element 2 along  counteracts that of element 1, as seen in the above Figure. Thus, the contributions to E add up to zero so that  has only z-component



But 




However, 

As 


What values of h gives the maximum value of E ?
To get this, we should apply the Extrema problems









1.1.2.3 [bookmark: _Toc172137444][bookmark: _Toc174020544]A Surface Charge  

Consider an infinite charged sheet with total charge  laid on the xy-plane with uniform charge density . 

	[image: ]
	



Figure ‎2.1‑7: Electric Field Intensity due to Surface Charged Sheet
The total electric filed intensity  at observation point P (0,0,h) due to the surface charged infinite sheet can be found by the integration of the differential electric filed  





The charge associated with an elemental area dS is



For Cylindrical coordinate system 

 

Since the differential area’s normal vector is along 

 
 
 





It is recommended that we transfer from cartesian coordinate to cylindrical coordinate as per transformation matrix 




 








Substituting above equations in  




Due to the symmetry of the charge distribution, for every element 1, there is a corresponding element 2 whose contribution along  cancels that of element 1, as illustrated in Figure above. Thus, the contributions to E add up to zero so that  has only z-component












This integration requires integration by substitution 

	Let 






	








1.1.2.4 [bookmark: _Toc172137445][bookmark: _Toc174020545]A Volume Charge  
Let the volume charge distribution with uniform charge density  be as shown in Figure
[image: ]
Figure ‎2.1‑8: Electric Field Intensity due to charged sphere
The electric field  at P(0, 0, z) due to the differentially volume charge is



where . Due to the symmetry of the charge distribution, the contributions to  or  add up to zero. We are left with only , given by



However, we need to find an expression for 
For the  it will be simply derived from the differential displacement for the spherical coordinate system 

 
 can be found by multiplying the differential displacement of the individual components of 


However, for the differential volume within the spherical charged object 






Rearranging above equation to get a better view about the necessary simplifications 



As for   we will make use of the cosine law 
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To find the limits of integration for R, we make use of the limits of integration in 



When 


When 


































This result is obtained for  at P(0, 0, z). Due to the symmetry of the charge distribution, the electric field at P(r, θ, Φ) is readily obtained from eq. (4.33) as



which is identical to the electric field at the same point as a result of a point charge Q situated at the origin or the center of the spherical charge distribution

1.1.3 [bookmark: _Toc172137446][bookmark: _Toc174020546]ELECTRIC FLUX DENSITY

The flux due to the electric field intensity  can be calculated using the general definition of flux below.

For practical reasons, however, this quantity is not usually considered as the most useful flux in electrostatics. Also, the electric field intensity is dependent on the medium in which the charge is placed (free space in this section). Let’s Suppose a new vector field D independent of the medium is defined by


1.1.3.1 [bookmark: _Toc172137447][bookmark: _Toc174020547]The flux density for point charge 



1.1.3.2 [bookmark: _Toc172137448][bookmark: _Toc174020548]The flux density for continuous charge distribution  








1.1.4 [bookmark: _Toc172137449][bookmark: _Toc174020549]GAUSS'S LAW - MAXWELL'S EQUATION

Gauss's law states that the total electric flux denoted by  through any given closed surface S is equal to the total electric charge enclosed by that surface.


[image: Gauss’s law and its applications]
Figure ‎2.1‑9: Gauss's Applications for Different Source Elements
But given a flux density vector field  continuous in a region containing the smooth closed surface S then the net outward flux of  is given by 


Applying divergence theorem for above equation 


But the enclosed charge  can be written as below

Substituting both the total flux equation and charge enclosed equation we get 



Equaling both volume integrals we get 

The first of Maxwell's equations, known as Gauss's law, is derived and asserts that the volume charge density is equal to the divergence of the electric flux density.

1.1.5 [bookmark: _Toc172137450][bookmark: _Toc174020550]APPLICATIONS OF GAUSS'S LAW

The procedure for applying Gauss's law to calculate the electric field involves the following:
1- Identify the charge distribution symmetry by knowing whether symmetry exists. 
2- Once symmetric charge distribution exists, construct a mathematical closed surface (known as a Gaussian surface). The surface is chosen such that  is normal or tangential to the Gaussian surface. When D is normal to the surface,  =  because D is constant on the surface. When D is tangential to the surface, 
3- Apply Gauss’s law 



1.1.5.1 [bookmark: _Toc172137451][bookmark: _Toc174020551]A Point charge 
Suppose a point charge  is located exactly at the origin. To determine  and  at a point P, it is easy to see that choosing a spherical surface containing P will satisfy symmetry conditions. Therefore, a spherical surface that is centered at the origin serves as the Gaussian surface in this particular scenario, as seen in Figure.
[image: ]
Figure ‎2.1‑10: Gauss Application for Point Charge
1- Locate the object at its location which is the origin (0,0,0)
2- Construct Gaussian mathematical symmetrical surface around the charged object, and in this case, it will be a sphere.
3- Apply Gauss’s Law


First, we should find 

The flux density vector will be along 

The differential displacement for the spherical coordinate system 


And the differential surface ds will have a norm along 








Then, we should find 

Equalizing both sides of Gauss’s equation will get 

But 




1.1.5.2 [bookmark: _Toc172137452][bookmark: _Toc174020552]An Infinite Line charge 

Suppose an infinite line of uniformly linear charge  C/m lies along the z-axis. To determine the electric flux density  at a point P, we will choose a gaussian cylindrical surface containing point P to satisfy symmetry condition as shown in Figure.  is constant on and normal to the cylindrical Gaussian surface; that is,  = Dρaρ. If we apply Gauss's law to an arbitrary length  of the line
[image: A diagram of a cylinder

Description automatically generated]
Figure ‎2.1‑11:Gauss Application for Line Charge
1- Locate the object at its location which is the along the z-axis
2- Construct Gaussian mathematical symmetric surface around the charged object, and in this case, it will be a cylinder
3- Apply Gauss’s Law


First, we should find 

The flux density vector will be along 


The differential displacement for the cylindrical coordinate system 

 

Since the differential area’s normal vector is along 

 






Then, we should find 


Equalizing both sides of Gauss’s equation will get 

But 




1.1.5.3 [bookmark: _Toc172137453][bookmark: _Ref172394571][bookmark: _Ref172394639][bookmark: _Toc174020553]Infinite Sheet of Charge

Considering an infinite sheet of uniform charge  C/m2 lying on the z = 0 plane. To evaluate the electric flux density  at point P, We will choose a rectangular prism that is bisected symmetrically by the sheet of charge and has two of its sides parallel to the sheet, as seen in the Figure.
[image: ]
Figure ‎2.1‑12:Gauss Application for Infinite Surface Charge
1- Locate the object at its location which is lying on the z = 0 plane
2- Construct Gaussian mathematical symmetric surface around the charged object, and in this case, it will be a rectangular box
3- Apply Gauss’s Law





Equalizing both side of the equation 






1.1.5.4 [bookmark: _Toc172137454][bookmark: _Toc174020554]Charged Sphere 

Consider a sphere of radius  with a uniform charge  C/m3. To determine the electric flux density  D everywhere, we will construct a spherical Gaussian surfaces for areas    and r > a separately. 
[image: ]
Figure ‎2.1‑13: Gauss Application for Charged Sphere
For  
1- Locate the object at its location which is a sphere with center at origin (0,0,0)
2- Construct Gaussian mathematical symmetric surface around the charged object, and in this case, it will be a sphere with for r ≤ a
3- Apply Gauss’s Law


First, we should find 

The flux density vector will be along 

The differential displacement for the spherical coordinate system 

And the differential surface ds will have a norm along 







Then, we should find 


 can be found by multiplying the differential displacement of the individual components of 







Equaling both sides




For  
1- Locate the object at its location which is a sphere with center at origin (0,0,0)
2- Construct Gaussian mathematical symmetric surface around the charged object, and in this case, it will be a sphere with r≥a
3- Apply Gauss’s Law


First, we should find 


The flux density vector will be along 


The differential displacement for the spherical coordinate system 


And the differential surface ds will have a norm along 







Then, we should find 


 can be found by multiplying the differential displacement of the individual components of 












Sketching of  against  can be depicted below
[image: A diagram of a function

Description automatically generated]


1.1.5.5 [bookmark: _Toc172137455][bookmark: _Toc174020555]Charged Cylinder 
	

	[image: ]


Figure ‎2.1‑14:Gauss Application for Charged Cylinder
For 
1- Locate the object at its location which is the along the z-axis
2- Construct Gaussian mathematical symmetric surface around the charged object, and in this case, it will be a cylinder
3- Apply Gauss’s Law


First, we should find 

The flux density vector will be along 


The differential displacement for the cylindrical coordinate system 

 

Since the differential area’s normal vector is along 

 





Then, we should find 





Equalizing both sides of Gauss’s equation will get 

But 




For 
1- Locate the object at its location which is the along the z-axis
2- Construct Gaussian mathematical symmetric surface around the charged object, and in this case, it will be a cylinder
3- Apply Gauss’s Law


First, we should find 

The flux density vector will be along 


The differential displacement for the cylindrical coordinate system 

 

Since the differential area’s normal vector is along 
 





Then, we should find 




Equalizing both sides of Gauss’s equation will get 

But 





Then, the electrical flux density 


1.1.6 [bookmark: _Toc172137456]ELECTRIC POTENTIAL

Suppose we want to move a point charge  in an electric field  from point A which is at distance  from origin to point B which is at distance  as shown in Figure below. 
[image: A diagram of a graph

Description automatically generated]
[bookmark: _Ref173606303]Figure ‎2.1‑15: Point Charge moving within Electric Field from Point A to B
From Coulomb's law, the electrostatic force on  is simply given in below equation

So that the work  done in displacing the charge  by  is


The negative sign indicates that the work is being done by an external agent. Thus, the total work done, or the potential energy required, in moving Q from A to B is


Dividing  by  in eq. above gives the electric potential energy per unit charge. This quantity, denoted by , is known as the potential difference between points A and B. Thus


1. In determining , A is the initial point while B is the final point.
2. If  is positive, there is a gain in potential energy in the movement; an external agent performs the work. However, If  is negative, there is a loss in potential energy in moving  from A to B; this implies that the work is being done by the field
3.  is independent of the path taken.
4.  is measured in joules per coulomb, commonly referred to as volts (V).
As an example, if the E field in Figure ‎2.1‑15 is due to a point charge  located at the origin, then

Then the electric potential will be 






Where  and  are the potentials (or absolute potentials) at A and B, respectively. Thus, the potential difference VAB may be regarded as the potential at B with reference to A. In problems involving point charges, it is customary to choose infinity as reference; that is, we assume the potential at infinity is zero. Thus, if VA = 0 as rA —» , the potential at any point (rB —> r) due to a point charge  located at the origin is


The electric potential at any point is the potential difference between that point and a chosen point at which the potential is zero. In other words, by assuming zero potential at infinity, the potential at a distance r from the point charge is the work done per unit charge ( by an external agent in transferring a test charge from infinity to that point. Thus


The potential V(x, y, z) or V(r) at position vector r, where the point charge Q in equation (4.63) is placed at a point with position vector r', is given by:


We have examined the electric potential resulting from a point charge. Other forms of charge distribution may be analyzed using the same fundamental principles, since every charge distribution can be conceptualized as a collection of individual point charges. The superposition concept, which we used for electric fields, is also applicable to potentials. The potential at position vector r, due to n point charges Q1, Q2, Q3,... ,Qn placed at position vectors r1,r2,r3 ,. . ., rn, may be calculated.




For continuous charge distributions, we replace  in eq. (4.66) with charge element pL dl, ps dS, or pv dv and the summation becomes an integration, so the potential at r becomes





The potential difference  can be found generally from



1.1.7 [bookmark: _Toc172137457][bookmark: _Toc174020557]Relationship Between E and V— Maxwell's Equation




Adding both equations:



This shows that the line integral of  along a closed path as shown in Figure ‎2.1‑16 must be zero. Physically, this implies that no network is done in moving a charge along a closed path in an electrostatic field. Applying Stokes's theorem to above equation:

Or 

[image: ]
[bookmark: _Ref173606908]Figure ‎2.1‑16: Circulation within Electric Field
Any vector field that satisfies above equations is said to be conservative, or irrotational. Thus, an electrostatic field is a conservative field. Equations above is referred to as Maxwell's equation (the second Maxwell's equation to be derived) for static electric fields; they both depict the conservative nature of an electrostatic field.
From the way we defined potential, , it follows that


But

Comparing the two expressions for , we obtain

Thus


1.1.8 [bookmark: _Toc172137458][bookmark: _Toc174020558]AN ELECTRIC DIPOLE AND FLUX LINES

An electric dipole is created by placing two point charges with equal magnitude but opposing signs close together. Examine the dipole shown in Figure 4.20. The potential at point P, located at coordinates is expressed as
[image: A diagram of a point

Description automatically generated]
Figure ‎2.1‑17: Electric Dipole







Where  and  are the distances between P and +Q and P and -Q, respectively If , and eq. (4.77) becomes


Since   , where  , if we define




To find the electric field intensity 











An electric flux line is a conceptual trajectory or line that is shown in a manner that its orientation at any given position corresponds to the direction of the electric field at that specific place. 
	[image: A diagram of a graph

Description automatically generated with medium confidence]

	[image: enter image description here]


Figure ‎2.1‑18: Electric Flux Lines






1.1.9 [bookmark: _Toc172137459][bookmark: _Toc174020559]ENERGY DENSITY IN ELECTROSTATIC FIELDS
In order to determine the electrical energy contained inside a collection of electric charges, it is necessary to first calculate the quantity of work required to build them. Let's consider the task of placing three-point charges, , , and , in an area that is originally empty, as seen in Figure ‎2.1‑19 
[image: A diagram of a human head

Description automatically generated]
[bookmark: _Ref173532385]Figure ‎2.1‑19: Energy available in an assembly of charges

No effort is necessary to move  from an infinite distance to  since the space initially has no charge and there is no electric field present [ hence W = 0]. While , is present, the amount of effort required to move , from infinity to  is equal to the product of  and the potential  at  caused by . Similarly, the amount of effort required to position  at  is given by the equation , where  and  represent the potentials at  caused by  and , respectively. Therefore, the whole work performed in arranging the three charges is


If the charges were arranged in a reversed sequence 


where  is the potential at   due to ,  and  are, respectively, the potentials at P1 due to  and . Adding eqs. Of total work equation in each sequence 



	



	+

	


	=

	




Where  are total potentials at, respectively. In general, if there are n point charges, eq. (4.86) becomes


If the area has a continuous charge distribution instead of point charges, the summation in equation (4.87) is replaced by integration. In other words,





Since 

Then 

But as per below identity, for any vector D and scalar V


Rearranging above equation will give us the following  

Then upon substituting it in the work equation will give us




Using divergence theorem on the first term on the right side of this equation yields


Note that V and  vary as 1/r and 1/r2 for point charges, 1/r2 and 1/r3 for dipoles, etc. Thus,  in the first term on the right side of above equation must vary at least 1/r3 and  as r2. As S grows, the first integral in equation must trend to zero. Thus, eq. (4.94) becomes into


Since 

Then 

But 


From this, we can define electrostatic energy density  (in J/m ) as


1.2 [bookmark: _Toc172137460][bookmark: _Toc174020560]ELECTRIC FIELDS IN MATERIAL SPACE
In the preceding part, we examined electrostatic fields in a vacuum or an environment free of any materials. Therefore, the progress we have made in electrostatics may be considered as the theory of the "vacuum" field. Similarly, the content we will explore in this part may be seen as the theory of electrical phenomena in physical space.

Electric fields may occur in both free space and material mediums. Materials may be categorized into two main categories based on their electrical properties: conductors and nonconductors. Insulators or dielectrics are the terms often used to describe nonconducting materials. To facilitate comprehension of conduction, electric current, and polarization, a concise overview of the electrical characteristics of materials will be presented.

The following discussion will focus on many key features of dielectric materials, including susceptibility, permittivity, linearity, isotropy, homogeneity, dielectric strength, and relaxation time. This text will introduce the notion of boundary conditions for electric fields that occur in two distinct mediums.
1.2.1 [bookmark: _Toc172137461][bookmark: _Toc174020561] CONVECTION AND CONDUCTION CURRENTS

Electric current is caused by the electric charges motion within the conductor. The current (in amperes) through a given area is the electric charge passing through the area per unit time in other words it is the time rate of change for the electric charges.

Thus, in a current of 1 ampere, is the charge is being transferred at a rate of one coulomb per second. We now introduce the concept of current density J. If current  flows through a surface , the current density is

Or 

assuming that the current density is perpendicular to the surface. If the current density is not normal to the surface

Thus, the total current 


Current densities may vary depending on the method of creation. These variations include convection current density, conduction current density, and displacement current density. Convection current, in opposition to conduction current, does not need conductors and hence does not conform to Ohm's law. It occurs when an electric current flows through a medium that is not conductive, such as a liquid, a gas with low density, or a vacuum. An electron flow inside a vacuum tube might be referred to as a convection current.

Consider a filament of Figure ‎2.2.1‑1. If there is a flow of charge, of density pv, at velocity u = y, from eq. (5.1), the current through the filament is
[image: A drawing of a rectangular object with lines and symbols
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[bookmark: _Ref173579311]Figure ‎2.2.1‑1: Convection Current through filament



The current density at a given point is the current through a unit normal area at that
point. The y-directed current density  is given by


Hence, in general


The current I is the convection current, and  is the convection current density in amperes/square meter (A/m2).

Conduction current requires a conductor. A conductor is characterized by a large number of free electrons that provide conduction current due an impressed electric field. When an electric field  is applied, the force  on an electron with charge  is


Due to the electron being in a non-vacuum environment, it will not experience acceleration when subjected to the electric field. Instead, it experiences many collisions with the atomic lattice and moves from one atom to another. According to Newton's rule, the average change in momentum of a free electron, with mass m, traveling in an electric field E with an average drift velocity u, must be equal to the applied force. Therefore,


Or 


where  is the average time interval between collisions. This implies that the velocity at which the electron moves due to an electric field is precisely proportional to the strength of the field. The electronic charge density may be expressed as the product of the number of electrons per unit volume, denoted as n, and the charge of each electron.


Thus, the conduction current density is



Where  is the conductivity of the conductor
1.2.2 [bookmark: _Ref173878425][bookmark: _Toc174020562] Conductors and Ohm’s Law

A conductor contains an excess of charge that is free to move. Consider an isolated conductor, as shown in Figure ‎2.2.1‑1 below. When an external electric field, , is applied, the positive free charges are pushed in the same direction as the applied field, while the negative free charges go the other way. This charge movement occurs quite fast. 
[image: ]
Figure ‎2.2.2‑1: Isolated Conductor subjected to Electric Field
Consequently, the free charges do (2) two things:
1- Initially, they accumulate on the conductor's surface and generate an induced surface charge. 
2. Subsequently, the induced charges establish an internal induced field  that negates the externally applied field  . Figure ‎2.2.2‑2 below illustrates the outcome. 
[image: A diagram of a circuit
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[bookmark: _Ref173762336]Figure ‎2.2.2‑2: Isolated Conductor at Equilibrium State
This leads to an important property and critical characteristic of a conductor:
A perfect conductor or ideal conductor cannot contain an electrostatic field inside it, and a conductor is called an equipotential body, implying that the potential is the same everywhere in the conductor. This is based on the fact that  



Another perspective to explore is to examine Ohm's law,

To maintain a finite current density , in a perfect conductor the conductivity is high (), and this consequently requires that the electric field inside the conductor (internal induced field  must vanish. In other words,  because (), in a perfect conductor.


Should any charges be added within such a conductor, the charges will migrate to the surface and rapidly spread themselves so that the field inside the conductor disappears. According to Gauss's law  , if there is no electric field () ,), the charge density  must be zero. Once again, we may deduce that a perfect conductor is incapable of confining an electric field inside its boundaries. When there are no changes or movements occurring (in other words under static conditions) 
We now consider a conductor whose ends are maintained at a potential difference V, as shown in Figure ‎2.2.2‑3. 
[image: Ohm's Law - Explanation, Formulas, Solved Example Problems]
[bookmark: _Ref173762474]Figure ‎2.2.2‑3: Conductor Connected with Battery
Note that in this case, the electric filed inside the conductor does not equal to zero (E ≠ 0, as in Figure ‎2.2.2‑2. But the question is what is the difference? 

The answer is that in Figure ‎2.2.2‑3 there is no static equilibrium because the conductor is not isolated but it is wired to an electromotive force source which is the DC battery, which compels and forces free charges to migrate and prevents electrostatic equilibrium, so an electric field must exist within the conductor to sustain the current flow.  As the electrons undergo motion, they experience resistance, which refers to the dampening forces that act upon them.  Based on Ohm's law , we will derive the resistance of the conductor. 

Suppose the conductor has a length  and a uniform cross-sectional area  as shown in Figure ‎2.2.2‑4. The direction of the produced electric field  is in the same direction of the flow of positive (+ve) charges or conventional current . This direction is opposite to the direction of the flow of negative (-ve) charges which is the electrons e. 
[image: A diagram of a cylindrical object with arrows and a line of electrical components
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[bookmark: _Ref173783042]Figure ‎2.2.2‑4:  Ohm's Law Example with Uniform Conductor
The electric field applied will be uniform and its magnitude is given by



Since the conductor has a uniform cross section , then the current density  is 

But 

Hence





[image:  ]
Where  =  is the resistivity of the material. The Equation above is valid in determining the resistance of any conductor of uniform cross-sectional area. However, If the cross section of the conductor is not uniform, the above equation is not valid. Then, the basic definition of resistance R as the ratio of the potential difference  between the two ends of the conductor to the current  passing through the conductor will be applied. Therefore, and the resistance of a conductor of nonuniform cross section will be as per below:

Power P (in watts) is defined as the time rate of change of energy W (in joules) or force times velocity. Hence,

But the electric force on charge is

Substituting in Power equation, we will get 

Rearranging 


But remember that the current density 


Which is known as Joule's law. The power density wP (in watts/m3) is given by the integrand in eq. (5.18); that is,


For a conductor with uniform cross section, , so eq. (5.18) becomes






1.2.3 [bookmark: _Toc174020563] POLARIZATION IN DIELECTRICS

The most significant difference between a conductor and a dielectric lies in the presence or absence of unbound electrons in the outermost atomic shells, which enable the conduction of electric current. While charges in a dielectric cannot move freely, they are nevertheless subject to finite forces. Therefore, it is reasonable to predict a displacement when an external force is applied.
In order to comprehend the overall impact of an electric field on a dielectric at a larger scale, it is helpful to see an atom inside the dielectric as comprising of a negative charge - Q (electron cloud) and a positive charge +Q (nucleus), as shown in the scenario. Figure ‎2.2.3‑1 (a). An analogous representation may be used to a dielectric molecule, where the nuclei inside the molecules are seen as point charges and the electronic arrangement is considered as a single cloud of negative charge. 
Due to an equal distribution of positive and negative charge, the whole atom or molecule maintains electrical neutrality. Then, when an electric field E is applied on the dielectric molecule, the positive charge inside the dielectric is displaced from its equilibrium position in the same direction of  by the electrostatic force while the negative charge is displaced in the opposite direction by the electrostatic force .

As a result of this deformation, an electric dipole is created from the displacement of the charges and the dielectric then is said to be polarized. In the polarized state, the electron cloud is distorted by the applied electric field . This distorted charge distribution is equivalent, by the principle of superposition, to the original distribution plus a dipole whose moment is

Where  is the distance vector directed from  to  of the dipole as in Figure ‎2.2.3‑1(b).Now, If there are N number of dipoles in a volume  of the dielectric, the total dipole moment due to the electric field is the summation of the induvial dipoles

[image: ]
[bookmark: _Ref173822806]Figure ‎2.2.3‑1: (a) Atom without External E (b) Atom Subjected to E and dipole Formation
As a measure of intensity and the strength of the polarization, we will define polarization  (in C/m2) as the dipole moment per unit volume  of the dielectric; that is,



Thus, we can conclude that the major effect of the applied electric field E on a dielectric is the creation of dipole moments that align themselves in the same direction of E.

Let us now calculate the electric potential at point P due to a polarized dielectric. Consider the dielectric material shown in Figure ‎2.2.3‑2 as consisting of dipoles with dipole moment P per unit volume . 
[image: A diagram of a cell

Description automatically generated]
[bookmark: _Ref173848602]Figure ‎2.2.3‑2: Dielectric Material

The electric potential  at an exterior point O due to the dipole moment  is given as below

But

Thus

From the position vector of the polarized material and point where we are calculating the electric potential 



Solving the gradient of 1/R 











Substituting above equation in the differential potential equations 

Applying the vector identity below

Thus











By applying divergence theorem to the first term on the right-hand side of this equation, we have




where a'n represents the outward unit normal vector to the surface dS' of the dielectric. By comparing the terms on the right side of equation (5.26) with equations (4.68) and (4.69), it can be seen that these terms represent the potential caused by surface and volume charge distributions, with densities (after removing the primes).







In other words, eq. (5.26) reveals that where polarization occurs, an equivalent volume charge density  is formed throughout the dielectric while an equivalent surface charge density  is formed over the surface of the dielectric. We refer to  and  as bound (or polarization) surface and volume charge densities, respectively, as distinct from
free surface and volume charge densities ps and pv. Bound charges refer to charges that are immobile inside the dielectric material. These charges arise due to the molecular displacement that takes place during polarization. Free charges refer to electrons in a conductor that have the ability to move across a significant distance. These charges are the ones that we have influence over. 

The net positive charge on the surface S that encloses the dielectric is


while the charge that remains inside S is

Thus, the total electric charge of the dielectric material will remain zero, that is,


This is expected because the dielectric was electrically neutral before polarization.

We now consider the case in which the dielectric region contains free charge. If pv is the free charge volume density, the total volume charge density p, is given by











But we know that as per Gauss’s law and divergence theorem 




But for sine dielectric P is proportional to the applied electric field E, then the polarization can be mathematically written as below 

where , defined as the electric susceptibility of the material, is essentially an indicator of how sensitive (or susceptible) a certain dielectric is to electric fields. Then 



Let 
Then





 is called the permittivity of the dielectric, while is called the dielectric constant or relative permittivity, while  is the permittivity of free space, and it is as approximately  F/m, 

1.2.4 [bookmark: _Toc174020564] CONTINUITY EQUATION AND RELAXATION TIME

According to the concept of charge conservation, the rate at which charge decreases inside a certain volume ∆v must be equal to the total current flowing out of the closed surface surrounding the volume. The current  exiting the enclosed surface is


Where Qin is the total charge enclosed by the closed surface.
[image: A drawing of a cube with lines and arrows
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Figure ‎2.2.4‑1: Continuity of Current through volume
 Invoking divergence theorem

But 




Since both volume integrals are equal, then 

The equation that describes the continuity of current is referred to as the continuity of current equation. It is important to note that the continuity equation is derived from the concept of conservation of charge. It simply asserts that there cannot be any accumulation of charge at any place. For steady currents,  = 0 and hence  showing that the total charge leaving a volume is the same as the total charge entering it. Kirchhoff's current law follows from this.
We make use of eq. (5.43) in conjunction with Ohm's law


As per Gauss’s law 







But 

Multiplying both sides with 



But

Then


This is first order differential equation which can be solved using separable 


Integrating both sides



Taking e for both sides 




In the equation provided,  represents the initial charge density, specifically the charge density at time t = 0. The equation demonstrates that the introduction of charge at an internal location of the material leads to a decrease in the volume charge density . The deterioration is accompanied by the migration of electric charge from the initial site of introduction to the surface of the material. The time constant Tr, measured in seconds, is referred to as the relaxation time or rearrangement time.

1.2.5 [bookmark: _Toc174020565] BOUNDARY CONDITIONS

So far, we have examined the presence of the electric field in a uniform medium. Boundary conditions refer to the criteria that a field must meet at the interface between two distinct media within an area. These requirements are useful for finding the field on one side of the boundary if the field on the other side is already known. The criteria will be determined by the composition of the media materials. Let us examine the boundary conditions for an interface that separates

• Dielectric () and dielectric () 
• Conductor and dielectric
• Conductor and free space

To determine the boundary conditions, we need to use Maxwell's equations:


and

Additionally, it is necessary to break down the electric field intensity E into two mutually perpendicular components:

where Et and En are, respectively, the tangential and normal components of E to the interface of interest. A similar decomposition can be done for the electric flux density D.


1.2.5.1 [bookmark: _Toc174020566]Dielectric-Dielectric Boundary Conditions

Consider the E field existing in a region consisting of two different dielectrics characterized by  and  as shown in Figure 5.10(a). E1 and E2 in media 1 and 2, respectively, can be decomposed as

[image: ]
Figure ‎2.2.5.1‑1: Dielectric-Dielectric Boundary Condition

1- 
Applying the circulation of  to the closed path 
[image: ]
Figure ‎2.2.5.1‑2: Circulation of Electric Field Intensity along path a,b,c,d,a






The tangential components of E are the same on the two sides of the boundary. In other words,  undergoes no change on the boundary and it is said to be continuous across the boundary 



The tangential component of D undergoes some changes on the boundary, and it is said to be discontinuous across the boundary 
2- 
[image: ]
Figure ‎2.2.5.1‑3: Gauss's Law application for Dielectric-Dielectric





If no free charge is available at the interface




The normal component of D undergoes no changes on the boundary, and it is said to be continuous across the boundary 


Law of Refraction 
[image: ]
Figure ‎2.2.5.1‑4: Law of Refraction for Dielectric-Dielectric
From  


From




Dividing Equation (1) by (2)






1.3 [bookmark: _Toc174020567]ELECTROSTATIC BOUNDARY-VALUE PROBLEMS

In previous chapters, the method for calculating the electric field E has often included either using Coulomb's law or Gauss's law when the charge distribution is known, or utilizing the equation  when the potential V is known throughout the whole area. However, in most real-life scenarios, both the distribution of charges and the distribution of potentials are often unknown.

1.3.1 [bookmark: _Toc174020568] POISSON'S AND LAPLACE'S EQUATIONS

Poisson's and Laplace's equations are easily derived from Gauss's law (for a linear mater-ial medium)


And 


Hence, substituting 





This is known as Poisson's equation. A special case of this equation occurs when pv = 0 (i.e., for a charge-free region). Equation (6.4) then becomes


1.3.2 [bookmark: _Toc174020569]GENERAL PROCEDURE FOR SOLVING POISSON'S OR LAPLACE'S EQUATION

The following general procedure may be taken in solving a given boundary-value problem involving Poisson's or Laplace's equation:

1. Solve Laplace's (if ) or Poisson's (if ) equation using either (a) direct integration when V is a function of one variable, or (b) separation of variables if V is a function of more than one variable. The solution at this point is not unique but expressed in terms of unknown integration constants to be determined.
2. Apply the boundary conditions to determine a unique solution for V. Imposing the
given boundary conditions makes the solution unique.
3. Having obtained V, find E using  and D from D = eE.
4. If desired, find the charge Q induced on a conductor using Q = J ps dS where ps — Dn and Dn is the component of D normal to the conductor. If necessary, the
capacitance between two conductors can be found using C = Q/V.

1.3.2.1 [bookmark: _Toc174020570]Solving Poisson’s Equation for Cartesian Coordinate System 

In high-voltage power equipment, it is necessary to cool the components that transport electric current in order to dissipate the heat generated by ohmic losses. An electric field is used to impart force to the cooling fluid, hence serving as a method of pumping. Figure 6.1 depicts the modeling of electrohydrodynamic (EHD) pumping. The space between the electrodes is filled with a consistent charge p0, which is created at the left electrode and collected at the right electrode. Determine the pump's pressure given that the initial pressure (po) mC per cubic meter and the initial volume (Vo).

This problem is a boundary value problem involving piosson’s or Laplace equation and below is the procedure of solving such problem in cartesian coordinate system  
1- Solve Laplace’s equation (if) or Poisson’s equation (if  )
Now, in above problem since  we apply Poisson’s equation

[image: ]
The boundary conditions:



So that V depends only on Z 




Integrating once 

Integrating again yields 



2- Apply the boundary conditions to determine a unique solution of V 





Hence, the unique solution of V will be 



Having obtained V, we can obtain , then  , and finally   











2. [bookmark: _Toc174020571]Solving Poisson’s Equation for Cylindrical Coordinate System 
Semi-infinite conducting planes = 0 and  =  are separated by an infinitesimal insulating gap as in Figure 6.3. If V() = 0 and V( ) = 100 V, calculate V and E in the region between the planes.
[image: A diagram of a graph
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This problem is a boundary value problem involving piosson’s or Laplace equation and below is the procedure of solving such problem in cartesian coordinate system  
1- Solve Laplace’s equation (if) or Poisson’s equation (if  )

Now, in above problem since  we apply Laplace’s equation

The boundary conditions:



So that V depends only on Φ



Multiplying both side with 

Integrating once 

Integrating again yields 



2- Apply the boundary conditions to determine a unique solution of V 




Hence, the unique solution of V will be 



Having obtained V, we can obtain , then  , and finally   








2. [bookmark: _Toc174020572]Solving Poisson’s Equation for Spherical Coordinate System 

Conducting spherical shells with radii a=10 cm and b=30 cm  are maintained at a potential difference of 100V such that  V() = 0 and V( ) = 100 V, calculate V and E in the region between the shells.


[image: A diagram of a circular object
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This problem is a boundary value problem involving poisson’s or Laplace equation and below is the procedure of solving such problem in cartesian coordinate system  
1- Solve Laplace’s equation (if) or Poisson’s equation (if  )

Now, in above problem since  we apply Laplace’s equation


The boundary conditions:



So that V depends only on r



Multiplying both side with 

Integrating once 

Integrating again yields 



2- Apply the boundary conditions to determine a unique solution of V 




Then 







Hence, the unique solution of V will be 






Having obtained V, we can obtain , then  , and finally   












1.3.3 [bookmark: _Toc174020573]Resistance Evaluation using Boundary Value Problems 

In Section ‎2.2.2 the definition of resistance was covered and we derived below equation for evaluating the resistance of a conductor with uniform cross-sectional area. 


However, If the cross section of the conductor is not uniform, above equation becomes not valid and the resistance should be obtained from equation below

The problem of determining the resistance of a conductor with a nonuniform cross section can be viewed as a boundary-value problem. The following steps can be taken to determine the resistance R (or conductance G = l/R) of a given conducting material using eq. (6.16):

1. Choose a suitable and proper coordinate system.
2. Assume the potential difference   as the initial voltage as between conductor terminals.
3. Solve Laplace's equation  to obtain V. 
4. Then determine E from 
5. After this, obtain  from 
6. Finally, obtain R as .

[image: ]
The resistance of the bar between the vertical curved surfaces at  and 
This problem is a boundary value problem involving piosson’s or Laplace equation and below is the procedure of solving such problem in cartesian coordinate system  
1- Solve Laplace’s equation (if) or Poisson’s equation (if  )

Now, in above problem since  we apply Laplace’s equation

The boundary conditions:



So that  depends only on 



Multiplying both side with 

Integrating once 

Integrating again yields 



2- Apply the boundary conditions to determine a unique solution of V 





Then we can find B

Hence, the unique solution of V will be 




Having obtained , we can obtain , then  , and finally   










Having obtained  we can find 


[image: ]
Then we can find the total current  

For cylindrical coordinate system 

 

Since the differential area normal vector is along 


Then we can calculate the total current as per below






Then we can calculate the resistance 

The resistance of the bar between the horizontal curved surfaces at  and 
This problem is a boundary value problem involving piosson’s or Laplace equation and below is the procedure of solving such problem in cartesian coordinate system  
1- Solve Laplace’s equation (if) or Poisson’s equation (if  )
Now, in above problem since  we apply Laplace’s equation

The boundary conditions:



So that  depends only on 

Integrating once 

Integrating again yields 




2- Apply the boundary conditions to determine a unique solution of V 





Hence, the unique solution of V will be 


Having obtained , we can obtain , then  , and finally   










Having obtained  we can find 


[image: ]
Then we can find the total current  

For cylindrical coordinate system 

 

Since the differential area normal vector is along 


Then we can calculate the total current as per below







Then we can calculate the resistance 


1.3.4 [bookmark: _Toc174020574]Capacitance Evaluation using Boundary Value Problems 

Typically, the existence of a capacitor necessitates the existence of two or more conductors that carry charges of the same magnitude but opposing in kind, see Figure ‎2.3.4‑1. This implies that every line of magnetic flux that emerges from one conductor must ultimately terminate at the surface of the other conductor. The conductors of the capacitor are sometimes referred to as plates. The plates may be separated either by a vacuum or by a dielectric substance.
[image: A diagram of a nuclear physics experiment
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[bookmark: _Ref173933009]Figure ‎2.3.4‑1: Two conductors -capacitor
Consider the two-conductor capacitor shown in Figure ‎2.3.4‑1. The two conductors are maintained at a potential difference of V given by

where  is the electric field existing between the conductors and conductor 1 is assumed to carry a positive charge. (Note that the E field is always normal to the conducting surfaces.)

The capacitance C of the capacitor is a physical property of the capacitor and is measured in farads (F) and it is defined as the ratio of the magnitude of the charge   on one of the plates to the potential difference   between them; that is,


The negative sign before   has been dropped because we are interested in the absolute value of . Using eq. (6.18), C can be obtained for any given two-conductor capacitance by following either of these methods:

1. Assuming Q and determining V in terms of Q (involving Gauss's law)
2. Assuming V and determining Q in terms of V (involving solving Laplace's equation)

1. Choose a suitable coordinate system.
2. Let the two conducting plates carry charges + Q and - Q
3. Determine E using Coulomb's or Gauss's law and find V from V = — J E • d\. The
negative sign may be ignored in this case because we are interested in the absolute value of V.
4. Finally, obtain C from C = Q/V.


1.3.4.1 [bookmark: _Toc174020575]Parallel Plate Capacitor 
A parallel plate capacitor consists of two or more conducting plates that contain equal charges of opposing polarity. The flux lines originating from one plate end on the other plate. The plates may be separated by either empty space or a dielectric material.
[image: ]
To derive the capacitance, we should follow below steps:
1- Choose the suitable coordinate system which will be the cartesian coordinate system in the parallel plate capacitor case. 
2- We assume that plates 1 and 2 carry electric charge +Q and -Q respectively and they are uniformly distributed on them. 
3- Find the electric field intensity  using Gauss’s law 




Equalizing both side of the equation 





However, the electric field derived was assuming only one plate (sheet), but in case we have two sheets with different kind of charge, then at any point within the two sheets the total electric field will be the resultant field from the summation 




4- Find the electric potential 




5- Calculate the capacitance 



1.3.4.2 [bookmark: _Toc174020576]Cylindrical Capacitor 

This is essentially a coaxial cable or coaxial cylindrical capacitor. Consider length L of two coaxial conductors of inner radius a and outer radius b (b > a) as shown in Figure 6.14. Let the space between the conductors be filled with a homogeneous dielectric with permittivity ε . We assume that conductors 1 and 2, respectively, carry +Q and -Q uniformly distributed on them. 
[image: A diagram of a cylinder with a circle and a circle with arrows
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By applying Gauss's law to an arbitrary Gaussian cylindrical surface of radius ρ (a < p < b), we obtain


1- Choose the suitable coordinate system which will be the cylindrical coordinate system in the cylindrical capacitor case. 
2- We assume that cylinders 1 and 2 carry electric charge +Q and -Q respectively and they are uniformly distributed on them. 
3- Find the electric field intensity E using Gauss’s law. 


For 
1- Locate the object at its location which is the along the z-axis
2- Construct Gaussian mathematical symmetric surface around the charged object, and in this case, it will be a cylinder
3- Apply Gauss’s Law


First, we should find 

The flux density vector will be along 


The differential displacement for the cylindrical coordinate system 

 

Since the differential area’s normal vector is along 

 






Then, we should find 





Equalizing both sides of Gauss’s equation will get 



But 





4- Find the electric potential 










5- Calculate the capacitance 





1.3.4.3 [bookmark: _Toc174020577]Spherical Capacitor 

This is the case of two concentric spherical conductors. Consider the inner sphere of radius a and outer sphere of radius b{b> a) separated by a dielectric medium with permittivity e as shown in Figure 6.15. We assume charges +Q and -Q on the inner and outer spheres
[image: ]
By applying Gauss's law to an arbitrary Gaussian cylindrical surface of radius ρ (a < p < b), we obtain

1- Choose the suitable coordinate system which will be the spherical coordinate system in the spherical capacitor case. 
2- We assume that sphere 1 and 2 carry electric charge +Q and -Q respectively and they are uniformly distributed on them. 
3- Find the electric field intensity E using Gauss’s law. 


For 
1- Locate the object at its location which is the along the z-axis
2- Construct Gaussian mathematical symmetric surface around the charged object, and in this case, it will be a cylinder
3- Apply Gauss’s Law
For  
1- Locate the object at its location which is a sphere with center at origin (0,0,0)
2- Construct Gaussian mathematical symmetric surface around the charged object, and in this case, it will be a sphere with r≥a
3- Apply Gauss’s Law


First, we should find 


The flux density vector will be along 


The differential displacement for the spherical coordinate system 


And the differential surface ds will have a norm along 








Then, we should find 



The differential displacement for the spherical coordinate system 


And the differential surface ds will have a norm along 









But 








4- Find the electric potential V 





5- Calculate the capacitance 




















[bookmark: _Toc172137462][bookmark: _Toc174020578]Magnetostatics

[image: Magnetostatics in Free Space | Ansys Innovation Courses]
1.4 [bookmark: _Toc174020579]Magnetostatics

Oersted discovered a clear connection between electric and magnetic fields in 1820. An electrostatic field is generated by charges that are static or stationary. When charges move at a constant velocity, they generate a static magnetic field, also known as a magnetostatic field. A magnetostatic field is generated by a steady flow of electric current, also known as direct current. The flow of current may be attributed to magnetization currents, such as those seen in permanent magnets, electron-beam currents, as seen in vacuum tubes, or conduction currents, which occur in wires carrying current. This chapter focuses on the magnetic fields that arise in free space as a result of direct current. 

Our talks in Electrostatics were focused on static electric fields, which are described by either E or D. Our attention is now directed on static magnetic fields, which are defined by the symbols H or B. 


1.4.1 [bookmark: _Toc174020580]BIOT-SAVART'S LAW

Biot-Savart's law states that the magnetic field intensity  produced at a point P, as shown in Figure below, by the differential current element  is proportional to the product  and the sine of the angle a between the clement and the line joining P to the element and is inversely proportional to the square of the distance R between P and the element.
[image: ]
Figure ‎3.1.1‑1: Magnetic Field dH at point P due to differential current element Idl


where k is the constant of proportionality. In SI units, k = 1/4, so eq. (7.2) becomes


From the definition of cross product in eq. (1.21), it is easy to notice that eq. (7.3) is better put in vector form as




Thus, the orientation of  may be established using the right-hand rule, where the right-hand thumb indicates the direction of the current and the right-hand fingers encircle the wire in the direction of , as seen in Figure ‎3.1.1‑2(a). In contrast, we may use the right-handed screw rule to ascertain the orientation of . By aligning the screw parallel to the wire and pointing it in the direction of current flow, the direction in which the screw moves forward corresponds to the direction of dH, as seen in Figure ‎3.1.1‑2 (b).
[image: ]
[bookmark: _Ref173934081]Figure ‎3.1.1‑2: Direction of  determination using Right Hand Rule and right-handed Screw
The conventional practice is to depict the direction of the magnetic field strength  (or current ) using a tiny circle with a dot or cross symbol, depending on whether  (or ) is directed out of or into the page, as shown in Figure ‎3.1.1‑3
[image: ]
[bookmark: _Ref173934381]Figure ‎3.1.1‑3: Direction of H or I

We may also observe diverse arrangements of current: line current, surface current, and volume current, as illustrated in Figure ‎3.1.1‑4. The relationship between the source components may be defined by considering K as the surface current density (measured in amperes per meter) and J as the volume current density (measured in amperes per square meter).


[image: ]
[bookmark: _Ref173934457]Figure ‎3.1.1‑4: Current Distributions
Thus, in terms of the distributed current sources, the Biot-Savart law as in eq. (7.4) becomes





1.4.2 [bookmark: _Toc174020581] Magnetic Field Strength due to Current Carrying Conductors  
1.4.2.1 [bookmark: _Toc174020582]Magnetic Field Strength due to Current Carrying Straight Conductor  

To illustrate, we will calculate the magnetic field generated by a straight current-carrying filamentary conductor with a finite length AB, as shown in Figure ‎3.1.2.1‑1. It is assumed that the conductor is positioned along the z-axis, with its upper and lower ends subtending angles a2 and a} at point P, where the value of H is to be found. Special attention should be given to this assumption, since the resulting formula will need to be applied correctly. When evaluating the contribution  at point P caused by an element  located at coordinates (0, 0, z),
[image: ]
[bookmark: _Ref173935068]Figure ‎3.1.2.1‑1: Field at Point P due to Filamentary straight conductor










It is recommended that we transfer from cartesian coordinate to cylindrical coordinate as per transformation matrix 



 







But in our case 





Substituting in  equation 









From the red triangle 
[image: ]

Differentiating both sides 




















1.4.2.2 [bookmark: _Toc174020583]Magnetic Field Strength due to Current Carrying Circular Loop (Ring)  

A circular current carrying loop located on x2 + y2 = 9, z = 0 carries a direct current of  along aϕ. We will Determine H at (0, 0, h).
[image: A diagram of a circle and a circle with arrows

Description automatically generated]
Figure ‎3.1.2.2‑1: Circular Current Carrying Loop
The differential magnetic field intensity  at point P due to differential current element  is given by Biot’s Savart law 



The differential displacement for the cylindrical coordinate system 

 







It is recommended that we transfer from cartesian coordinate to cylindrical coordinate as per transformation matrix 




 









Substituting in  equation 








By symmetry, the contributions along  add up to zero because the radial components
produced by pairs of current elements 180° apart cancel. This may also be shown mathematically by writing  in rectangular coordinate systems (i.e.,  = cos ϕ ax + sin ϕ ay

Integrating cos ϕ or sin ϕ over 0 < ϕ < 2π gives zero, thereby showing that Hp = 0. Thus






1.4.2.3 [bookmark: _Toc174020584]Magnetic Field Strength due to Current Carrying Solenoid  
[image: What is solenoid? What factors affect the solenoid? How does the solenoid  helps in flowing current?]
Figure ‎3.1.2.3‑1: Solenoid
[image: A diagram of a triangle with lines and points
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Figure ‎3.1.2.3‑2: Cross-section of Solenoid
Since the solenoid consisting of circular loops, we shall apply ring equation whereby the contribution of the magnetic field at point P by the solenoid of length dz



But


[image: ]

Differentiating both sides



Substituting in  equation 













If we have an infinitely long solenoid, then 


1.4.3 [bookmark: _Toc174020585] Ampere's Circuit Law—Maxwell's Equation

Ampere's circuit law states that the line integral of the tangential component of magnetic field strength  around a closed path L is the same as the net current . enclosed by the path.

In other words

Ampere's law is comparable to Gauss's law, and it is straightforward to apply in order to ascertain H when the current distribution is symmetrical. It is important to mention that this equation is always valid regardless of whether the current distribution is symmetrical or not. However, the equation can only be employed to ascertain H when a symmetrical current distribution is present. A special case of Biot-Savart's law is Ampere's law; the former may be derived from the latter.

By employing Stoke's theorem on the left-hand side of equation (7.16), we can derive


But 

Comparing the surface integrals in eqs. 


clearly reveals that



1.4.4 [bookmark: _Toc174020586]APPLICATIONS OF AMPERE'S LAW

We now apply Ampere's circuit law to determine H for some symmetrical current distributions as we did for Gauss's law. We will consider an infinite line current, an infinite current sheet, and an infinitely long coaxial transmission line.

1.4.4.1 [bookmark: _Toc174020587]Infinite Line Current
Consider a current-carrying wire that is indefinitely long and is aligned along the z-axis, as illustrated in Figure 7.10. We examine a confined route that travels through a specific observation site (P) in order to measure the magnetic field strength (H). The Amperian path, which is analogous to the term "Gaussian surface," is the path along which Ampere's law is to be implemented. The Amperian route has been chosen as a concentric circle to guarantee that H remains constant, as illustrated in equation (7.14) when p remains constant. In accordance with Ampere's law, this route completely encircles the entire current in the circuit.
[image: ]
Figure ‎3.1.4.1‑1:indefinitely long current-carrying conductor




For cylindrical coordinate system 

 

Since the differential displacement vector is along 







Equaling both sides


1.4.4.2 [bookmark: _Toc174020588]Infinite Sheet of Current
Let’s now consider an infinite current sheet in the z = 0 plane. If the sheet has a uniform current density K = Kyay A/m as shown in Figure 7.11, applying Ampere's law to the rectangular closed path (Amperian path) 1-2-3-4-1 gives
[image: ]
Figure ‎3.1.4.2‑1: Infinite Sheet of Current

In order to compute the integral, it is necessary to have a clear understanding of the characteristics of . In order to do this, we consider the infinite sheet as consisting of filaments. The magnetic field strength, dH, above or below the sheet caused by a pair of filamentary currents may be determined using equations (7.14) and (7.15). As seen in Figure 7.11(b), the resulting dH only contains a component in the x-direction. Furthermore, the negative of  on one side of the sheet is present on the opposite side. Because the sheet is infinitely large, it may be seen as being made up of pairs of filaments. These filaments have the same properties for the infinite current sheets, namely, the attributes of  for a pair.


where Ho is yet to be determined. Evaluating the line integral of H in eq. (7.21b) along the closed path in Figure 7.11 (a) gives




Equaling both sides


1.4.4.3 [bookmark: _Toc174020589]Infinitely Long Coaxial Transmission Line

Consider a transmission line that is infinitely long and is composed of two concentric cylinders with their axes aligned with the z-axis. Figure 7.12 illustrates the line's cross section, with the z-axis extending beyond the page. The inner conductor has a radius of a and carries current , whereas the outer conductor has a thickness of t and an inner radius of b and carries return current . Assuming that the current is uniformly distributed in both conductors, we aim to ascertain  in all locations.
	[image: A diagram of a circular object

Description automatically generated]
	[image: ]



Since the current distribution is symmetrical, we will apply Ampere’s law

For cylindrical coordinate system 

 

Since the differential displacement vector is along , then dl will be 


And if the current direction is along az, then the differential area is 


For path L1: 









But 





Equaling both sides


For path L2: 









Equaling both sides



For path L3: 








Where J is the current density for the outer conductor along -az 














Equaling both sides



For path L4: 









1.4.4.4 [bookmark: _Toc174020590]Toroid
[image: MECCANIXITY Toroid Inductor magnético de bobina de cobre de inductancia  47uH 20A para placa de circuito de bricolaje, paquete de 1 : Amazon.com.mx:  Herramientas y Mejoras del Hogar]
Figure ‎3.1.4.4‑1:Toroid
[image: ]
Figure ‎3.1.4.4‑2: Cross-section of Toroid
 










Equaling both sides


1.4.5 [bookmark: _Toc174020591]MAGNETIC FLUX DENSITY—MAXWELL'S EQUATION

The magnetic flux density B is like the electric flux density D. whereby as 
 in free space, also the magnetic flux density  is related to the magnetic field intensity  according to

where  is a constant and it is known as the permeability of free space. The constant is in henrys/meter (H/m) and has the value of

The magnetic flux through a surface S is given by


Where the magnetic flux  is in webers (Wb) and the magnetic flux density B is in
webers/square meter (Wb/m2) or teslas. The magnetic flux line represents the trajectory along which the magnetic field vector B is tangential at every location inside a magnetic field. The magnetic field line is the orientation that the needle of a magnetic compass will align itself with when put in the magnetic field. Figure 7.16 displays the magnetic flux lines resulting from a straight, elongated wire.

[image: A diagram of a magnetic field
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Figure ‎3.1.5‑1: Magnetic Flux Lines for current carrying conductor
We know that in an electrostatic field, the flux passing through a closed surface is the same as the charge enclosed; that is, . Thus, it is possible to have an isolated electric charge as shown in Figure ‎3.1.5‑2, which also reveals that electric flux lines are not necessarily closed. 
[image: A diagram of a diagram of a closed surface
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[bookmark: _Ref173942860]Figure ‎3.1.5‑2: Electric Flux Lines for Positive Charge terminated at negatively charged infinite sheet 
Unlike electric flux lines, magnetic flux lines are always close upon themselves as in Figure ‎3.1.5‑3. This is due to the fact that it is not possible to have isolated magnetic poles (or magnetic charges)
[image: A diagram of a magnetic field
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[bookmark: _Ref173942849]Figure ‎3.1.5‑3: Magnetic Flux Line for Permeant magnet

For example, if we desire to have an isolated magnetic pole by dividing a magnetic bar successively into two, we end up with pieces each having north and south poles as illustrated in Figure 7.18. We find it impossible to separate the north pole from the south pole.

[image: A close-up of a black and white image
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Figure ‎3.1.5‑4: Non-Existence of Magnetic Mono Pole
Thus, the total flux through a closed surface in a magnetic field must be zero; that is,


This equation is referred to as the law of conservation of magnetic flux or Gauss's law for magnetostatic fields just as  is Gauss's law for electrostatic fields. Although the magnetostatic field is not conservative, magnetic flux is conserved.
By applying the divergence theorem to eq. (7.33), we obtain

Or 






1.4.6 [bookmark: _Toc174020592]MAXWELL'S EQUATIONS FOR STATIC EM FIELDS

	Differential Form
	Integral Form
	Name of the Law

	
	

	Gauss Law

	
	

	Nonexistence of Magnetic Monopole

	
	

	Conservativeness of Electrostatic Field 

	
	

	Amper’s law



1.4.7 [bookmark: _Toc174020593]MAGNETIC SCALAR AND VECTOR POTENTIALS

It is worth noting that some electrostatic field issues were made simpler by establishing a relationship between the electric potential V and the electric field intensity E (E=-∇V). Similarly, we may establish a potential that is linked to the magnetostatic field B. The magnetic potential may exist in two forms: scalar Vm or vector A. In order to define Vm and A, it is necessary to remember two significant identities. 




which must always hold for any scalar field V and vector field A.
Just as , we define the magnetic scalar potential Vm (in amperes) as related
to H according to


The condition attached to this equation is important and will be explained upon discussing the displacement current density. 
Combining equation below

and equation below together 

We will get 

But 


Hence for the above equation to be correct, J must equal to 0

We know that for a magnetostatic field, as stated in eq. (7.34). In order to satisfy eqs. (7.34) and (7.35b) simultaneously, we can define the vector magnetic potential A (in Wb/m) such that

But we do know that 


For electrostatic field, the electric potential is 

However, for magnetostatic the magnetic vector potential will be 



For example, we can derive eq. (7.41) from eq. (7.6) in conjunction with eq. (7.39). To do this, we write eq. (7.6) as





[image: ]
[bookmark: _Ref173955558]Figure ‎3.1.7‑1: Differential Current Line Current in xyz- Space



Where  is the distance vector from the line element Idl at the source point (x', y', z') to the field point (x, y, z) as shown in Figure ‎3.1.7‑1 and R = |R|, that is,





From the position vector of the polarized material and point where we are calculating the electric potential, we will Sol the gradient of  











Substituting in B equation 








Substituting in B equation

Since  operates with respect to (x, y, z) while  is a function of (x' y', z'),  = 0. Hence,







Where 


Substituting   in the flux equation 


Applying the stocks theorem 

Hence


1.4.8 [bookmark: _Toc174020594]MAGNETIC VECTOR POTENTIALS ON INFINIT CURRENT SHEET
[image: A diagram of a graph

Description automatically generated]
If plane z = 0 carries uniform current K = Kyay, the magnetic field strength will be


Obtain this by using the concept of vector magnetic potential.

For a surface current the magnetic vector potential will be 


In cartesian coordinate system

For z>0























In the integrand, we may change coordinates from Cartesian to cylindrical for convenience so that
	Cartesian Coordinate
	Cylindrical Coordinate

	

	

	
	

	
	







This integration requires integration by substitution 

	Let 






	









But




By simply replacing z by -z in eq. (7.8.2) and following the same procedure, we obtain


1.4.9 [bookmark: _Toc174020595]DERIVATION OF BIOT-SAVART'S LAW AND AMPERE'S LAW

Both Biot-Savart's law and Ampere's law may be derived using the concept of magnetic vector potential. The derivation will involve the use of the following 2 vector identities



Since Biot-Savart's law as given in eq. below



 Is basically on line current, we begin our derivation with eqs. (7.39) and (7.41); that is,

Where 

Substituting A in B 


But applying below vector identity  





Since  operates with respect to (x, y, z) and dl' is a function of (x', y', z'), = 0


But

where  is a unit vector from the source point to the field point. Thus eq. (7.54) (upon dropping the prime in ) becomes

which is Biot-Savart's law.


Using the identity in eq. (7.52) with eq. (7.39), we obtain


It can be shown that for a static magnetic field

so that upon replacing B with  and using eq. (7.19), eq. (7.58) becomes










which is called the vector Poisson's equation. It is similar to Poisson's equation ( ) in electrostatics.
Furthermore, it can be shown that Ampere's circuit rule aligns harmoniously with our established understanding of the magnetic vector potential. By using Stokes's theorem and equation (7.39),








which is Ampere's circuit law.




1.5 [bookmark: _Toc174020596]MAGNETIC FORCES, MATERIALS, AND DEVICES

There are at least three ways in which force due to magnetic fields can be experienced. The force can be (a) due to a moving charged particle in a B field, (b) on a current element in an external B field, or (c) between two current elements.
1.5.1 [bookmark: _Toc174020597]Force on a Charged Particle

According to our discussion in Chapter 4, the electric force Fe on a stationary or moving electric charge Q in an electric field is given by Coulomb's experimental law and is related to the electric field intensity E as


This shows that if Q is positive, Fe and E have the same direction.

A magnetic field can exert force only on a moving charge. From experiments, it is found that the magnetic force Fm experienced by a charge Q moving with a velocity u in a magnetic field B is


This clearly shows that Fm is perpendicular to both u and B.
[image: motion of a charged particle in magnetic field ]
From eqs. (8.1) and (8.2), a comparison between the and they can be made.

	Criteria 
	Electric force 
	Magnetic force 

	Velocity of the charge u
	independent
	dependent

	Work
	Perform work 
	Cannot perform work, because it is at right angles to the direction of motion of the charge (Fm • dl = 0)

	Kinetic Energy 
	change its kinetic energy
	does not cause an increase in kinetic energy

	Force Magnitude 
	

	 ; small except at high velocities 




For a moving charge Q in the presence of both electric and magnetic fields, the total force on the charge is given by





The equation is commonly referred to as the Lorentz force equation. It establishes a relationship between mechanical force and electrical force. According to Newton's second equation of motion, the mass of a charged particle that is moving in electric (E) and magnetic (B) fields is denoted as m.

	State of Particle 
	E field
	B field
	Combined E and B fields 

	Stationary 
	
	-
	

	Moving 
	
	
	



1.5.2 [bookmark: _Toc174020598]Force on a Current Element

To determine the magnetic force on a current element  of a current-carrying conductor due to the magnetic field B, we modify eq. (8.2) using the fact that for convection current 


We recall below relationships for the current elements  

Alternatively 


Hence


This shows that an elemental charge moving with velocity  (thereby producing convection current element  is equivalent to a conduction current element . Thus, the force on a current element  in a magnetic field B is found from eq. (8.2) by merely replacing  by ; that is,




If the current I is through a closed path L or circuit, the force on the circuit is given by


[image: Magnetic Force On A Current-Carrying Conductor Physics, 59% OFF]
Figure ‎3.2.2‑1: Magnetic Force on Current Currying Conductor
1.5.3 [bookmark: _Toc174020599]Force between Two Current Elements

Let us now consider the magnetic force between two elements and  

According to Biot-Savart's law, both current elements produce magnetic fields. So, we may find the force ) on element  due to the field produced by element  as shown below 



But from Biot-Savart's law,








[image: A diagram of a diagram

Description automatically generated]
Figure ‎3.2.3‑1: Force between two current elements
Also, we may find the force ) on element  due to the field produced by element  as shown below 



But from Biot-Savart's law,










1.6 [bookmark: _Toc174020600]MAGNETIC TORQUE AND MOMENT

Having analyzed the force exerted on a current loop inside a magnetic field, we can now ascertain the torque acting upon it. The comprehension of the torque experienced by a current loop in a magnetic field is crucial for comprehending the behavior of orbiting charged particles, d.c. motors, and generators. When the loop is aligned parallel to a magnetic field, it encounters a force that induces rotational motion. 

The torque T, also known as the mechanical moment of force, is calculated by taking the vector product of the force F and the moment arm r. 

The value provided represents the torque in Newton-meters (N.m). 


Let us apply this to a rectangular loop of length  and width  placed in a uniform magnetic field B as shown in Figure
[image: A diagram of a triangle and a square
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Remember  , because we notice that  is parallel to B along sides 12 and 34 of the loop and no force is exerted on those sides

And
 [image: A black arrows pointing to a circle

Description automatically generated with medium confidence]






where |F0| = IBl because B is uniform. Thus, no force is exerted on the loop as a whole. However, Fo and — Fo act at different points on the loop, thereby creating a couple. If the normal to the plane of the loop makes an angle a with B, as shown in the cross-sectional view of Figure 8.5(b), the torque on the loop is




But


We define the Quantity 

as the magnetic dipole moment (measured in amperes per square meter) of the loop. In equation (8.18), "an" represents a unit normal vector that is perpendicular to the plane of the loop. The direction of "an" is determined using the right-hand rule, where the fingers point in the direction of the current and the thumb points along "an". The magnetic dipole moment is defined as the multiplication of the current flowing through a loop and the area enclosed by the loop. The direction of the magnetic dipole moment is perpendicular to the plane of the loop.

1.7 [bookmark: _Toc174020601]A MAGNETIC DIPOLE

A magnetic dipole is commonly used to refer to either a bar magnet or a tiny filamentary current loop. The rationale for this and our definition of "small" will become apparent shortly. We will calculate the magnetic field B at the observation point P(r, θ, Φ) caused by a circular loop with current I, as shown in Figure 8.6. The magnetic vector potential at point P is.

	[image: A diagram of a circle with arrows and a circle with a point
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For cylindrical coordinate


But  








Where r, and r2 are the distances between P and +Qm and P and -Qm, respectively. If , and eq.

But 













But 











1.8 [bookmark: _Toc174020602]MAGNETIZATION IN MATERIALS
It is understood that a certain substance is comprised of individual atoms. Every atom may be considered as composed of electrons circling around a central positive nucleus, with the electrons also spinning about their own axes. Therefore, electrons either circling around the nucleus (as shown in Figure 8.10(a)) or spinning (as shown in Figure 8.10(b)) generate an internal magnetic field. Both of these electrical movements generate internal magnetic fields B that resemble the magnetic field created by a current loop seen in Figure 8.11. The magnetic moment of the analogous current loop is given by the equation m = IbSan, where S represents the area of the loop and Ib represents the bound current, which is associated  with the atom.

[image: A diagram of an electron diagram
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Without an external B field applied to the material, the sum of m's is zero due to random orientation as in Figure 8.12(a). When an external B field is applied, the magnetic moments of the electrons more or less align themselves with B so that the net magnetic moment is not zero, as illustrated in Figure 8.12(b).
[image: A diagram of a diagram of a diagram

Description automatically generated with medium confidence]
The magnetization M (in amperes/meter) is the magnetic dipole moment per unit volume.
If there are N atoms in a given volume ∆v and the kth atom has a magnetic moment m*.


A medium for which M is not zero everywhere is said to be magnetized.
For a differential volume dv', the magnetic moment is dm = M dv'. From eq. (8.21b), the vector magnetic potential due to dm is
[image: A diagram of a graph
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But








But 













We have below vector identity











Jb represents the bound volume current density or magnetization volume current density, measured in amperes per meter square. Kb represents the bound surface current density, measured in amperes per meter. an is a unit vector that is perpendicular to the surface. Equation (8.29) demonstrates that the potential of a magnetic body is a result of a volume current density Jb existing inside the body and a surface current Kb present on the body's surface. The vector M is comparable to the polarization P in dielectrics and is sometimes referred to as the magnetic polarization density of the medium. In another sense, M is analogous to H and they both have the same units. Regarding this matter, just as J equals the cross product of V and H, Jb also equals the cross product of V and M. Additionally, the symbols Jb and Kb, used for a magnetic body, have resemblance to ppv and pps, which are used for a polarized body. It is clear from equations (8.29) to (8.31) that Jh and Kh may be obtained from M. Consequently, ib and Kb are not usually used.

In free space, M = 0 and we have


where Jf is the free current volume density. In a material medium M ≠ 0, and as a result, B changes so that







The relationship in eq. (8.33) holds for all materials whether they are linear or not. The concepts of linearity, isotropy, and homogeneity introduced in Section 5.7 for dielectric media equally apply here for magnetic media. For linear materials, M (in A/m) depends linearly on H such that

where  is a dimensionless quantity (ratio of M to H) called magnetic susceptibility of the medium. It is more or less a measure of how susceptible (or sensitive) the material is to a magnetic field. Substituting eq. (8.34) into eq. (8.33) yields










The quantity is called the permeability of the material and is measured in henrys/meter; the henry is the unit of inductance and will be defined a little later. The dimensionless quantity  is the ratio of the permeability of a given material to that of free space and is known as the relative permeability of the material.
1.9 [bookmark: _Toc174020603]MAGNETIC BOUNDARY CONDITIONS

We define magnetic boundary conditions as the conditions that H (or B) field must satisfy at the boundary between two different media. Our derivations here are similar to those in Section 5.9. We make use of Gauss's law for magnetic fields

and Ampere's circuit law



[image: ]
1.10 [bookmark: _Toc174020604]INDUCTORS AND INDUCTANCES

A circuit (or closed conducting path) carrying current / produces a magnetic field B which causes a flux to pass through each turn of the circuit as shown in Figure 8.19. 
[image: A diagram of a coil with arrows
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If the circuit has N identical turns, we define the flux linkage  as


Also, if the medium surrounding the circuit is linear, the flux linkage X is proportional to the current / producing it; that is,



L represents a constant factor known as the circuit's inductance. Inductance Inductance (L) is a characteristic of the circuit's physical configuration. An inductor is a circuit or component of a circuit that has inductance. The inductance L of an inductor may be defined as the ratio of the magnetic flux linkage X to the current / passing through the inductor, as given by equations (8.50) and (8.51).

The unit of inductance is the henry (H), which is defined as the amount of inductance that produces one weber of magnetic flux per ampere of current. Inductances, being of considerable magnitude, are commonly quantified in millihenrys (mH). 
The inductance, as described by equation (8.52), is commonly referred to as self-inductance because it is produced by the inductor itself. Inductance can be regarded as a measure of the magnetic energy stored in an inductor, much like capacitance measures the amount of electrical energy stored in a capacitor. The magnetic energy stored in an inductor in circuit theory is measured in joules.

If instead of having a single circuit, we have two circuits carrying current I1 and I2 as shown in Figure 
[image: ]
Above circuit shows the magnetic interactions exits between the circuits 









We shall define the mutual inductances as below  
 is the ratio of flux linkage in circuit 1 to current 

 is the ratio of flux linkage in circuit 2 to current 

If the medium surrounding the circuits is linear then

We shall define the self-inductances as below  
 is the ratio of flux linkage in circuit 1 to current 

 is the ratio of flux linkage in circuit 2 to current 


An inductor is a type of conductor that is specifically designed to store magnetic energy. Common examples of inductors are toroids, solenoids, coaxial transmission lines, and parallel-wire transmission lines. The inductance of each of these inductors can be found by employing a process analogous to that used in determining the capacitance of a capacitor. To determine the self-inductance L of a given inductor, we follow these steps:

1. Choose a suitable coordinate system.
2. Let the inductor carry current .
3. Determine B from Biot-Savart's law (or from Ampere's law if symmetry exists)
4. Calculate  from 
5. Finally find L from


1.10.1.1 [bookmark: _Toc174020605]Inductance for Toroid

[image: ]










Equaling both sides
















1.10.1.2 [bookmark: _Toc174020606]Inductance for Solenoid 

[image: A diagram of a triangle with lines and points
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Since the solenoid consisting of circular loops, we apply ring equation whereby the contribution of the magnetic field at point P by the solenoid of length dz



But


[image: ]

Differentiating both sides



Substituting in dH equation 













If we have an infinitely long solenoid, then 






Finding the flux linkage per unit length 





1.10.1.3 [bookmark: _Toc174020607]Inductance for Coaxial Cable 

[image: A diagram of a circle with arrows
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L1

Since the current distribution is symmetrical, we will apply Ampere’s law


For Cylindrical coordinate system 

 

Since the differential displacement vector is along , then dl will be 


And if the current direction is along az, then the differential area is 

Internal Inductance Lin: For path L1: 









But 





Equaling both sides
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Internal Inductance Lin: For path L2: 









Equaling both sides
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The total inductance shall be 


1.11 [bookmark: _Toc174020608]MAGNETIC ENERGY

Just as the potential energy in an electrostatic field was derived as

Just as the potential energy in an electrostatic field was derived as

Consider a differential volume in a magnetic field as shown in Figure 8.21. Let the 
volume be covered with conducting sheets at the top and bottom surfaces with current .
[image: A diagram of a cube with arrows

Description automatically generated]
We assume that the whole region is filled with such differential volumes. From eq. (8.52), each volume has an inductance

If N=1

Per volume 


But 




As per Ampere's circuit law




Substituting in 







The magnetostatic energy density 






In below we will utilize the magnetostatic energy to derive the inductance for the coaxial cable 








Internal Inductance 












External Inductance 












1.12 [bookmark: _Toc174020609]MAGNETIC CIRCUITS

The concept of magnetic circuits involves the use of circuit theory to solve magnetic field difficulties. Magnetic circuits include many magnetic devices, including toroids, transformers, motors, generators, and relays. Analogizing magnetic circuits to electric circuits simplifies the analysis of such circuits. exploited. Once this is done, we can directly apply concepts in electric circuits to solve their analogous magnetic circuits.
The analogy between magnetic and electric circuits is summarized in Table below
	Analogy between Electric and Magnetic Circuit 

	Electric
	Magnetic

	Conductivity 
	Permeability 

	Field intensity E
	Field intensity H

	Current 
	Magnetic flux 

	Current density J
	Flux density B

	Electromotive force (emf) V or 
	Magnetomotive force (mmf) 

	Resistance 
	Reluctance  

	Conductance 
	Permeance   

	Ohm's law 
	Ohm's law 

	Kirchoff's laws 
	Kirchhoff's laws



The same can be portrayed in Figure 8.24. 
[image: A diagram of a circuit

Description automatically generated]
The reader is advised to pause and study Table 8.4 and Figure 8.24. First, we notice from the table that two terms are new. We define the magnetomotive force (mmf)  (in ampere-turns) as

As per Ohm’s law in magnetism

However, we can define the Magnetomotive force MMF 


But we know that


Then

However 

Then 



Where, 

The source of mmf in magnetic circuits is usually a coil carrying current as in Figure 8.24. We also define reluctance  (in ampere-turns/weber) as 

where € and S are, respectively, the mean length and the cross-sectional area of the magnetic core. The reciprocal of reluctance is permeance (3>. The basic relationships for circuit elements is Ohm's law (V = IR):


1.13 [bookmark: _Toc174020610]FARADAY'S LAW

Following Oersted's experimental revelation, which served as the foundation for the laws developed by Biot-Savart and Ampere, it became apparent that a consistent flow of electric current generates a magnetic field. Consequently, it was reasonable to investigate if magnetism might generate electricity. In 1831, almost 11 years after Oersted's first observation, Michael Faraday in London and Joseph Henry in New York independently ascertained that a magnetic field that changes over time may induce an electric current.

Based on Faraday's research, a stationary magnetic field does not generate any current, but a magnetic field that changes over time induces a voltage (known as electromotive force or emf) in a closed circuit, resulting in the flow of current.
Faraday discovered that the induced emf.  (in volts), in any closed circuit is
equal to the time rale of change of the magnetic flux linkage by the circuit



1.14 [bookmark: _Toc174020611]TRANSFORMER AND MOTIONAL EMFs

Having considered the connection between emf and electric field, we may examine how
Faraday's law links electric and magnetic fields. For a circuit with a single turn (N = 1),
eq. (9.1) becomes



where  has been replaced by  and S is the surface area of the circuit bounded by the closed path L. It is obvious from eq. (9.5) that in a time-varying situation, both electric and magnetic fields are present and are interrelated. Note that  and JS in eq. (9.5) are in accordance with the right-hand rule as well as Stokes's theorem. This should be observed in

1. By having a stationary loop in a time-varying magnetic field B 
2. By having a time-varying loop area in a static magnetic field B 
3. By having a time-varying loop area in a time-varying magnetic field B
Figure 9.3. The variation of flux with time as in eq. (9.1) or eq. (9.5) may be caused in three ways:

A. Stationary Loop in Time-Varying B Fit transformer emf)
This is the case portrayed in Figure 9.3 where a stationary conducting loop is in a time varying magnetic B field. Equation (9.5) becomes


[image: A diagram of a graph

Description automatically generated]
[image: Faraday's Law Of Induction: Lenz's Law Physics, 50% OFF]
The electromagnetic force (emf) generated by the changing current in a stationary loop, which creates a changing magnetic field, is commonly known as transformer emf in power analysis since it is caused by the transformer's operation. By utilizing Stokes's theorem on the intermediate term in equation (9.6), we derive 

For the two integrals to be equal, their integrands must be equal; that is,


B. Moving Loop in Static B Field (Motional emf)
When a conducting loop is moving in a static magnetic field B field, an emf is induced in the loop. We recall from eq. (8.2) that the force on a charge moving with uniform velocity u in a magnetic field B is




If we consider a conducting loop, moving with uniform velocity u as consisting of a large
number of free electrons, the emf induced in the loop is


The electromotive force (emf) generated by the movement of an item is known as motional emf or flux-cutting emf. This type of electromotive force (emf) is commonly observed in electrical devices such as motors, generators, and alternators. Figure 9.4 illustrates a two-pole direct current (dc) machine with a single armature coil and a commutator composed of two bars. Although this work does not delve into the intricate analysis of the d.c. machine, it is apparent that the coil's spinning within the magnetic field leads to the production of voltage. Figure 9.5 illustrates another example of motional electromotive force (emf), in which a rod is moving between a pair of rails. Since B and u are perpendicular, the equation (9.9) can be written in conjunction with equation (8.2) as:








By applying Stokes's theorem 


[image: A diagram of a machine

Description automatically generated]
[image: A diagram of a block with a couple of wires

Description automatically generated]

[image: A diagram of a rectangular object with arrows and lines

Description automatically generated][image: ]

C. Moving Loop in Time-Varying Field

This scenario describes a common situation when a conducting loop is in motion and is exposed to a magnetic field that changes over time. Both transformer electromotive force (emf) and motional emf are present. The total electromotive force (emf) can be obtained by combining equations (9.6) and (9.10).













[bookmark: _Toc172137463][bookmark: _Toc174020612]Conclusion

1- Electromagnetics (EM) is a branch of electrical engineering or physics in which electric and magnetic phenomena are thoroughly studied by the analyzing of the interactions between electric charges at rest which is the “electricity” and electric charge at motion which is the “magnetism”.
2- There is an analogy between the electricity and magnetism 
	Term 
	Electric
	Magnetic

	Force between source elements 
	

	


	Field Intensity from continuous charge/current distribution 
	

	


	Gauss/ Ampere’s 
	



	


	Force law
	

	 


	Source Element
	
	

	Filed Intensity 
	

	


	Flux Density 
	

	


	Relationship between fields 
	










	












	Potentials 
	
	


	Relationship between field and potential 
	

	


	Polarized and Magnetized material bound charge and current density  
	


	




	Dipole 
	

	


	Dipole Potential and Field Intensity 
	



	



	Flux
	


	



	Relatoionship between I and V 
	

	


	Energy Density 
	
	

	Poisson’s Equ
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Annex 2[image: Coordinate and unit vector]
Annex 3
	Cartesian → Cylindrical 
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	Cylindrical → Cartesian
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	Cartesian → Spherical 
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	Spherical → Cartesian
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	Cylindrical → Spherical 
	[image: barvení Přesnost skrýt transformation from cylindrical to spherical  coordinates - atelier-povetron.cz]

	Spherical→ Cylindrical
	[image: barvení Přesnost skrýt transformation from cylindrical to spherical  coordinates - atelier-povetron.cz]
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Figure 3.11 Deflection of current carrying wire in magnetic field
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Figure 2.7 Current through the conductor
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