

1

Daniel Ugochukwu Onovo
UB81898CO91115

DANIEL UGOCHUKWU ONOVO

UB81898CO91115

BACHELOR IN COMPUTER SCIENCE

COURSE: JAVA PROGRAMMING

ATLANTIC INTERNATIONAL UNIVERSITY

HONOLULU, HAWAII U.S.A

SEPTEMBER, 2024

2

Daniel Ugochukwu Onovo
UB81898CO91115

TABLE OF CONTENTS

 CONTENTS PAGE

1. Introduction to JAVA Programming ………………………………….……….……..…. 3

2. History of Java Releases ………………………………….……….……..…………………... 3

3. Advantages of Java programming ………………………………….……….………..…. 5

4. Disadvantages of Java Programming ………………………………….……….………. 6

5. Java Program Structure ……………………………………………………………………….. 8

6. Primitive Data Type in Java ………………………………….……….……..……………… 10

7. Printing Output in Java ………………………………….……….………………………..…. 14

8. Accepting Input from User in Java ……………………………………………………….. 17

9. Java Option Panes ……………………………………………………………………………….. 21

10. Variable Declaration and Initialization in Java ……………………………………… 24

11. Java Array ……………………………………………………………………………………………. 28

12. Using Operators in Java ……………………………………………………………………….. 32

13. Control Structure in Java ……………………………………………………………………………….. 37

14. Object Oriented Programming in Java ………………………………………………… 43

15. Conclusion …………………………………………………………….…………….……………... 51

16. Bibliography ……………………………………………………………………….…………….…. 52

3

Daniel Ugochukwu Onovo
UB81898CO91115

1.0 INTRODUCTION TO JAVA PROGRAMMING

Java is an object-oriented language for general-purpose business applications and for interactive,

Web-based Internet applications developed by James Gosling from Sun Microsystems in 1995 but

later owned by Oracle corporation. The core objective was to provide a platform-independent

alternative to C++. In other terms, it is architecturally neutral, i.e you can use Java to write a program

that will run on any platform or device (operating system). Java program can run on a wide variety of

computers because it does not execute instructions on a computer directly. Instead, it runs on a Java

Virtual Machine (JVM).

Java is a general-purpose programming language that’s used in virtually all industries for almost any

type of application. By being language is object-oriented (OO), Java allows you to easily relate

program constructs to real world objects.

Java is used for:

• Mobile applications (specially Android apps)
• Desktop applications
• Web applications
• Web servers and application servers
• Games
• Database connection
• And much, much more!

1.1 History of Java Releases

Java Version Release Date Important Features/Code Name

JDK 1.0 Jan 1996 Initial release

JDK 1.1 Feb 1997 Reflection, JDBC, Inner classes, RMI

J2SE 1.2 Dec 1998 Collection, JIT, String memory map

J2SE 1.3 May 2000 Java Sound, Java Indexing, JNDI

J2SE 1.4 Feb 2002 Assert, regex, exception chaining,

J2SE 5.0 Sept 2004 Generics, autoboxing, enums

Java SE 6.0 Dec 2006 JDBC 4.0, java compiler API, Annotations

4

Daniel Ugochukwu Onovo
UB81898CO91115

Java SE 7.0 July 2011 String in switch-case, Java nio, exception handling new way

Java 8 March 2014
A major release with key features like Lambda expressions, the

Stream API, and the new Date and Time API (java.time).

Java 9 Sept 2017

Introduced the module system (Project Jigsaw), JShell (the Java

Shell), and other enhancements like improved performance and

new APIs

Java 10 March 2018
Featured local variable type inference with the var keyword and

other minor improvements.

Java 11 Sept 2018

As a Long-Term Support (LTS) release, it included features like the

HTTP Client API, local-variable syntax for lambda parameters, and

the removal of some deprecated features.

Java 12 March 2019
Introduced features such as the Shenandoah garbage collector and

the switch expressions preview feature.

Java 13 Sept 2019
Continued with incremental improvements including text blocks as a

preview feature and enhancements to the garbage collector.

Java 14 March 2020

Added features like records (as a preview feature), instanceof

pattern matching, and the new foreign-memory access API (also as a

preview).

Java 15 Sept 2020
Included features like text blocks, sealed classes, and the ZGC

(Garbage Collector) improvements.

Java 16 March 2021

Introduced features such as the JEP 394 (pattern matching for

instanceof), JEP 395 (records), and JEP 396 (strong encapsulation of

JDK internals).

Java 17 Sept 2021

An LTS release, bringing features like pattern matching for switch

(preview), sealed classes, and new enhancements in the language

and JVM.

Java 18 March 2022
Included features like the new UTF-8 by default, and various

performance improvements and updates.

Java 19 Sept 2022

Added features such as the continuation of pattern matching for

switch, virtual threads (preview), and improvements in the Project

Loom.

Java 20 March 2023
Focused on further enhancements in pattern matching, virtual

threads, and other ongoing features from previous versions.

Java 21 Sept 2023 Another LTS release, continuing to improve upon the features

5

Daniel Ugochukwu Onovo
UB81898CO91115

introduced in earlier versions and adding new enhancements,

including updates to pattern matching, record types, and other

performance optimizations.

1.2 Advantages of Java programming language

• Java is Object Oriented (OO).

• It has Built-in support for socket communication and memory management (automatic

garbage collection).

• It has better portability than other languages across operating systems.

• Strongly Typed: Java enforces strict type checking at compile time, which helps catch errors

early in the development process. This can lead to more robust and reliable code.

• Automatic Memory Management: Java includes built-in garbage collection, which

automatically manages memory allocation and deallocation. This reduces the likelihood of

memory leaks and other related issues.

• Rich Standard Library: Java provides a comprehensive standard library that includes utilities

for tasks such as data manipulation, networking, file I/O, and user interface development.

This extensive library accelerates development and reduces the need for external libraries.

• Multi-threading Support: Java has built-in support for multi-threading, allowing developers to

write highly responsive and concurrent applications. The java.util.concurrent package offers

powerful tools for managing threads and synchronization.

• Security: Java has a strong security model that includes features such as the sandbox

environment for applets, bytecode verification, and runtime security checks. These features

help protect against various types of security threats.

• Community and Ecosystem: Java boasts a large and active community, which contributes to a

rich ecosystem of frameworks, libraries, and tools. This community support helps with

troubleshooting, learning, and expanding your development capabilities.

• Performance: While Java was initially criticized for being slower than languages like C++,

modern JVMs and Just-In-Time (JIT) compilers have significantly improved Java's

performance, making it suitable for a wide range of applications.

• Scalability: Java is well-suited for large-scale systems and enterprise applications. Its

architecture and frameworks (like Spring) support scalable and maintainable solutions for

complex business needs.

• Cross-Platform GUI: Java's Swing and JavaFX libraries provide tools for creating graphical user

interfaces that work across different platforms, making it easier to build cross-platform

desktop applications.

6

Daniel Ugochukwu Onovo
UB81898CO91115

• Java maintains a strong commitment to backward compatibility, meaning that code written in

older versions of Java will typically run on newer versions without modification. This helps in

maintaining and upgrading existing systems with minimal risk.

• And last but not least, Java supports Web-based applications (Applet, Servlet, and JSP),

distributed applications (sockets, RMI, EJB etc.) and network protocols (HTTP, JRMP etc.) with

the help of extensive standardized APIs (Application Programming Interfaces).

1.3 Disadvantages of Java Programming Language

Java is a versatile and widely-used programming language, but it does have some disadvantages:

• Performance Overheads: Java applications typically run on the Java Virtual Machine (JVM),

which introduces some performance overhead compared to native languages like C or C++.

The Just-In-Time (JIT) compilation and garbage collection processes can also impact

performance.

• Memory Consumption: Java applications can consume more memory than applications

written in some other languages. The JVM itself requires a significant amount of memory, and

Java's automatic garbage collection can lead to higher memory usage.

• Verbose Syntax: Java code can be quite verbose compared to languages like Python or Ruby.

This verbosity can lead to more boilerplate code and longer development times for simple

tasks.

• Lack of Modern Language Features: While Java has been evolving, it sometimes lags behind

other languages in adopting certain modern programming features. For example, features

like pattern matching, records, and local-variable type inference have been added only

recently.

• GUI Development: Java's Swing and AWT libraries for building graphical user interfaces are

often criticized for being outdated and less modern compared to other UI frameworks.

• Slow Startup Time: Java applications, particularly large ones, can have a slower startup time

due to the JVM's initialization and class loading processes.

• Complex Configuration and Tooling: Setting up a Java development environment can be

complex, with various tools, configurations, and dependencies to manage. While tools like

Maven and Gradle help with build automation, they also add another layer of complexity.

• Verbosity in Error Handling: Java’s exception handling can be verbose, with a lot of

boilerplate code needed to handle and propagate exceptions.

7

Daniel Ugochukwu Onovo
UB81898CO91115

• Limited Low-Level Programming: Java is designed to be a high-level language with a focus on

portability and safety, which limits its ability to perform low-level system programming tasks

that languages like C or C++ can handle.

1.4 THE JAVA PROGRAM LIFE CYCLE

Java requires the source code of your program to be compiled first. It gets converted to either

machine-specific code or a byte code that is understood by some run-time engine or a java virtual

machine.

Not only will the program be checked for syntax errors by a Java compiler, but some other libraries of

Java code can be added (linked) to your program after the compilation is complete (deployment

stage).

Step1 : Create a source document using any editor and save file as .java (e.g. aiu.java)

Step2 : Compile the aiu.java file using “javac” command or eclipse will compile it automatically.

Step3 : Byte Code (aiu.class) will be generated on disk.

Step4 : This byte code can run on any platform or device having JVM (java.exe convert byte code in

machine language)

Core Java terminologies.

▪ JDK (Java Development Kit): JDK contains JRE along with various development tools like Java

source compilers, Java libraries, Java debuggers, bundling and deployment tools

▪ JVM (Java Virtual Machine): ‘JVM’ is software that can be ported to various hardware

platforms. JVM will become an instance of JRE at runtime of java program. Byte codes are the

machine language for the JVM. Like a real computing machine, JVM has an instruction set

which manipulates various memory areas at run time. Thus for different hardware platforms,

one has corresponding the implementation of JVM available as vendor supplied JREs.

▪ JRE (Java Runtime Environment): It is also called JVM implementation. It is part of JDK but

can be used independently to run any compiled java program (byte code).

▪ Java API (Application Programming Interface) : These are Set of classes written using Java

programming language which runs on JVM. These classes will help programmers by providing

8

Daniel Ugochukwu Onovo
UB81898CO91115

standard methods like reading from the console, writing to the console, saving objects in data

structure etc.

1.5 JAVA PROGRAM STRUCTURE

Let’s use the example of ‘HelloWorld’ Java program (as shown in the screenshot picture below) to

understand structure and features of the class. This program is written on few lines, and its only task

is to print “Hello World from Java” on the screen

1.“package sct”:

It is package declaration statement. The package statement defines a namespace in which classes are
stored. The package is used to organize the classes based on functionality. If you omit the package
statement, the class names are put into the default package, which has no name. Package statement
cannot appear anywhere in the program. It must be the first line of your program or you can omit it.

2.“public class HelloWorld”:

This line has various aspects of java programming.

a. public: This is access modifier keyword which tells compiler access to class. Various values of
access modifiers can be public, protected,private or default (no value).

b. class: This keyword used to declare a class. Name of class (HelloWorld) followed by this keyword.

3. Comments section:

9

Daniel Ugochukwu Onovo
UB81898CO91115

We can write comments in java in two ways.

a. Line comments: It starts with two forward slashes (//) and continues to the end of the current line.
Line comments do not require an ending symbol.

b. Block comments start with a forward slash and an asterisk (/*) and end with an asterisk and a
forward slash (*/).Block comments can also extend across as many lines as needed.

4. “public static void main (String [] args)”:

Its method (Function) named main with string array as an argument.

a. public: Access Modifier

b. static: static is a reserved keyword which means that a method is accessible and usable even
though no objects of the class exist.

c. void: This keyword declares nothing would be returned from the method. The method can return
any primitive or object.

d. Method content inside curly braces. { } asdfla;sd

5. System.out.println("Hello World from Java") :

a. System: It is the name of Java utility class.

b. out:It is an object which belongs to System class.

c. println: It is utility method name which is used to send any String to the console.

d. “Hello World from Java”: It is String literal set as argument to println method.

1.6 COMMON PROGRAMMING GUIDELINES:

• Java identifiers must start with a letter, a currency character ($), or a connecting character
such as the underscore (_). Identifiers cannot start with a number. After first character
identifiers can contain any combination of letters,currency characters, connecting characters,
or numbers. For example,

o int variable1 = 10 ; //This is valid
o int 4var =10 ; // this is invalid, identifier can’t start with digit.

• Identifiers, method names, class names are case-sensitive; var and Var are two different
identifiers.

• You can’t use Java keywords as identifiers, Below table shows a list of Java keywords.

10

Daniel Ugochukwu Onovo
UB81898CO91115

abstract boolean break byte case catch

char class const continue default do

double clse extends final finally float

for goto if implements import instanceof

int interface long native new package

private protected public return short static

strictfp super switch synchronized this throw

throws transient try void volatile while

assert enum

• Classes and interfaces: The first letter should be capitalized, and if several words are linked
together to form the name, the first letter of the inner words should be uppercase (a format
that's sometimes called "camelCase").

• Methods: The first letter should be lowercase, and then normal camelCaserules should be
used.For example:

o getBalance
o doCalculation
o setCustomerName

• Variables: Like methods, the camelCase format should be used, starting with a lowercase
letter. Sun recommends short, meaningful names, which sounds good to us. Some examples:

o buttonWidth
o accountBalance
o empName

• Constants: Java constants are created by marking variables static and final. They should be
named using uppercase letters with underscore characters as separators:

o MIN_HEIGHT
• There can be only one public class per source code file.
• Comments can appear at the beginning or end of any line in the source code file; they are

independent of any of the positioning rules discussed here.
• If there is a public class in a file, the name of the file must match the name of the public class.

For example, a class declared as “public class Dog { }” must be in a source code file named
Dog.java.

2.0 PRIMITIVE DATA TYPE IN JAVA

Not everything in Java is an object. There is a special group of data types (also known as primitive
types) that will be used quite often in programming. Java defines eight primitive types of data: byte,
short, int, long, char, float, double, and boolean. The primitive types are also commonly referred to
as simple types which can be put in four groups

11

Daniel Ugochukwu Onovo
UB81898CO91115

• Integers: This group includes byte, short, int, and long, which are for whole-valued signed
numbers.

• Floating-point numbers: This group includes float and double, which represent numbers with
fractional precision.

• Characters: This group includes char, which represents symbols in a character set, like letters
and numbers.

• Boolean: This group includes boolean, which is a special type for representing true/false
values.

Let’s discuss each in details:

byte

The smallest integer type is byte. It has a minimum value of -128 and a maximum value of 127
(inclusive). The byte data type can be useful for saving memory in large arrays, where the memory
savings actually matters. Byte variables are declared by use of the byte keyword. For example, the
following declares and initialize byte variables called b:

byte b =100;

short:

The short data type is a 16-bit signed two's complement integer. It has a minimum value of -32,768
and a maximum value of 32,767 (inclusive). As with byte, the same guidelines apply: you can use a
short to save memory in large arrays, in situations where the memory savings actually matters.
Following example declares and initialize short variable called s:

short s =123;

int:

The most commonly used integer type is int. It is a signed 32-bit type that has a range from –
2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are commonly
employed to control loops and to index arrays. This data type will most likely be large enough for the
numbers your program will use, but if you need a wider range of values, use long instead.

int v = 123543;
int calc = -9876345;

long:

long is a signed 64-bit type and is useful for those occasions where an int type is not large enough to
hold the desired value. It has a minimum value of -9,223,372,036,854,775,808 and a maximum value
of 9,223,372,036,854,775,807 (inclusive). Use of this data type might be in banking application when
large amount is to be calculated and stored.

12

Daniel Ugochukwu Onovo
UB81898CO91115

long amountVal = 1234567891;

float:

Floating-point numbers, also known as real numbers, are used when evaluating expressions that
require fractional precision. For example interest rate calculation or calculating square root. The float
data type is a single-precision 32-bit IEEE 754 floating point. As with the recommendations for byte
and short, use a float (instead of double) if you need to save memory in large arrays of floating point
numbers. The type float specifies a single-precision value that uses 32 bits of storage. Single precision
is faster on some processors and takes half as much space as double precision. The declaration and
initialization syntax for float variables given below, please note “f” after value initialization.

float intrestRate = 12.25f;

double:

Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double precision
is actually faster than single precision on some modern processors that have been optimized for
high-speed mathematical calculations. All transcendental math functions, such as sin(), cos(), and
sqrt(), return double values. The declaration and initialization syntax for double variables given
below, please note “d” after value initialization.

double sineVal = 12345.234d;

boolean:

The boolean data type has only two possible values: true and false. Use this data type for simple flags
that track true/false conditions. This is the type returned by all relational operators, as in the case of
a < b. boolean is also the type required by the conditional expressions that govern the control
statements such as if or while.

boolean flag = true;
booleanval = false;

char:

In Java, the data type used to store characters is char. The char data type is a single 16-bit Unicode
character. It has a minimum value of '\u0000' (or 0) and a maximum value of '\uffff' (or 65,535
inclusive). There are no negative chars.

char ch1 = 88; // code for X
char ch2 = 'Y';

Primitive Variables can be of two types:

(1) Class level (instance) variable:

13

Daniel Ugochukwu Onovo
UB81898CO91115

It's not mandatory to initialize Class level (instance) variable. If we do not initialize instance variable
compiler will assign default value to it. Generally speaking, this default will be zero or null, depending
on the data type. Relying on such default values, however, is generally considered bad coding
practice.The following chart summarizes the default values for the above data types.

Primitive Data Type Default Value 3.6

byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0d

char '\u0000'

boolean false

(2) Method local variable:

Method local variables have to be initialized before using it. The compiler never assigns a default
value to an un-initialized local variable. If you cannot initialize your local variable where it is declared,
make sure to assign it a value before you attempt to use it. Accessing an un-initialized local variable
will result in a compile-time error.

Let’s See simple java program which declares, initialize and print all of primitive types.

Java class PrimitiveDemo as below:

package primitive;
public class PrimitiveDemo {
 public static void main(String[] args) {
 byte b =100;
 short s =123;
 int v = 123543;
 int calc = -9876345;
 long amountVal = 1234567891;
 float intrestRate = 12.25f;
 double sineVal = 12345.234d;
 boolean flag = true;
 boolean val = false;
 char ch1 = 88; // code for X
 char ch2 = 'Y';
 System.out.println("byte Value = "+ b);
 System.out.println("short Value = "+ s);
 System.out.println("int Value = "+ v);
 System.out.println("int second Value = "+ calc);
 System.out.println("long Value = "+ amountVal);
 System.out.println("float Value = "+ intrestRate);

14

Daniel Ugochukwu Onovo
UB81898CO91115

 System.out.println("double Value = "+ sineVal);
 System.out.println("boolean Value = "+ flag);
 System.out.println("boolean Value = "+ val);
 System.out.println("char Value = "+ ch1);
 System.out.println("char Value = "+ ch2);
 }
}

Output of above PrimitiveDemo class as below:

3.0 PRINTING OUTPUT IN JAVA

Printing output in Java is a fundamental aspect of programming that allows developers to display
information to the user, debug applications, and provide feedback. In Java, there are several ways to
print output, with varying levels of complexity and features. Here’s an extensive look at the various
methods available for printing output in Java.

1. Using System.out

The most common method for printing output in Java is through the System.out object. This object is
an instance of PrintStream, and it provides several methods to output data to the console.

Basic Methods

• print(): This method prints the specified data to the console without adding a newline
character at the end.

15

Daniel Ugochukwu Onovo
UB81898CO91115

System.out.print("Welcome to, AIU!"); // Output: Welcome to,

AIU!

• println(): This method prints the specified data followed by a newline character, moving the
cursor to the next line.

System.out.println("Welcome to, AIU!"); // Output: Welcome to,

AIU!

• printf(): This method allows for formatted output, similar to C’s printf. It takes a format
string followed by arguments.

int number = 10;

System.out.printf("The number is: %d\n", number); // Output:

The number is: 10

2. Formatting Output

Java provides a robust way to format strings, especially with String.format() and the

printf() method.

Using String.format()

You can create a formatted string and then print it using System.out.println().

String formattedString = String.format("The value of pi is

approximately %.2f", Math.PI);

System.out.println(formattedString); // Output: The value of pi is

approximately 3.14

3. Using the java.util.Formatter Class

For more complex formatting, Java has a Formatter class that provides various methods to format
data.

import java.util.Formatter;

Formatter formatter = new Formatter();

formatter.format("The value of e is approximately %.2f", Math.E);

System.out.println(formatter); // Output: The value of e is

approximately 2.72

formatter.close();

16

Daniel Ugochukwu Onovo
UB81898CO91115

4. Printing to Files

Java also provides ways to print output to files using the PrintWriter and FileWriter classes.

import java.io.FileWriter;

import java.io.PrintWriter;

import java.io.IOException;

try (PrintWriter writer = new PrintWriter(new

FileWriter("output.txt"))) {

 writer.println("Hello, File!");

} catch (IOException e) {

 e.printStackTrace();

}

5. Logging

For more advanced output requirements, especially in production applications, you might want to
use logging frameworks such as java.util.logging, Log4j, or SLF4J. These frameworks provide more
control over output, allowing for different logging levels (info, debug, error) and output destinations
(console, files, remote servers).

Example Using java.util.logging

import java.util.logging.Logger;

import java.util.logging.Level;

public class LoggingExample {

 private static final Logger logger =

Logger.getLogger(LoggingExample.class.getName());

 public static void main(String[] args) {

 logger.info("This is an info message.");

 logger.warning("This is a warning message.");

 }

}

6. Console Output

Java also provides System.console(), which can be useful for reading user input and printing
output in console applications. However, this method may return null if the Java application is not
connected to a console.

import java.io.Console;

17

Daniel Ugochukwu Onovo
UB81898CO91115

public class ConsoleExample {

 public static void main(String[] args) {

 Console console = System.console();

 if (console == null) {

 System.out.println("No console available");

 return;

 }

 console.printf("Hello, Console!%n");

 }

}

7. Special Characters

When printing output, you can use special escape sequences to format the text further.

• \n: New line

• \t: Tab

• \\: Backslash

• \": Double quote

Example

System.out.println("Hello,\nWorld!"); // Output: Hello,

 // World!

4.0 ACCEPTING INPUT FROM USER IN JAVA

Java's vast code libraries are one of its advantages for developers. The Scanner class is one extremely
helpful class that manages user input. The java.util library contains the Scanner class. Include a
reference to the Scanner class in your code to use it. The keyword import is used to accomplish this.

import java.util.Scanner;

The import statement needs to go just above the Class statement:

import java.util.Scanner;

public class StringVariables {

}

18

Daniel Ugochukwu Onovo
UB81898CO91115

This instructs Java that you wish to use the Scanner class, which is part of the java.util library, and
that you want to use it in that specific library.

Creating an object from the Scanner class is the next step. (A class consists just of code. Until you
construct a new object out of it, it accomplishes nothing.)

To create a new Scanner object the code is this:

Scanner user_input = new Scanner(System.in);

Thus, a Scanner variable will be created instead of an int or a String variable; which will be named
user_input. The keyword new comes after the equals symbol. Using this, new objects from a class
can be created. We are building an object that belongs to the Scanner class. We must inform Java
that this will be System Input (System.in) in between round brackets.

To get the user input, you can call into action one of the many methods available to your new
Scanner object. One of these methods is called next. This gets the next string of text that a user types
on the keyboard:

String first_name;
first_name = user_input.next();

After typing a dot following our user_input object, a popup will appear showing the available
methods. Double-click on "next" and then type a semicolon to end the line. Additionally, we can
print a message to prompt the user:

String first_name;
System.out.print("Enter your first name: ");
first_name = user_input.next();

Notice that print is being used instead of println as in the previous instance. The distinction between

the two is that println advances the cursor to a new line after displaying the output, while print keeps it

on the same line.

Additionally, a prompt for a family name will be included:

String family_name;
System.out.print("Enter your family name: ");
family_name = user_input.next();

This is the same code, except that java will now store whatever the user types into our family_name
variable instead of our first_name variable.

To print out the input, the following can be added:

19

Daniel Ugochukwu Onovo
UB81898CO91115

String full_name;
full_name = first_name + " " + family_name;

System.out.println("You are " + full_name);

Another String variable, full_name will be set up. Whatever is in the two variables first_name and
family_name will be stored. In between the two, we've added a space. The final line prints it all out
in the Output window.

So adapt your code so that it matches that in the image below:

20

Daniel Ugochukwu Onovo
UB81898CO91115

On running the programme the Output window displays the following:

Java is now pausing until something is entered on your keyboard. It won't progress until you hit the
enter key. So left click after "Enter your first name:" and you'll see your cursor flashing away. Type a
first name, and then hit the enter key on your keyboard.

After the enter key is hit, java will take whatever was typed and store it in the variable name to the
left of the equals sign. For us, this was the variable called first_name.

The programme then moves on to the next line of code:

Type a family name, and hit the enter key again:

The user input has now finished, and the rest of the programme executes. This is the output of the
two names. The final result should like this:

21

Daniel Ugochukwu Onovo
UB81898CO91115

So the Scanner class is used to get input from a user. Whatever was typed was stored in variables.
The result was then printed to the Output window.

5.0 JAVA OPTION PANES

Another useful class for accepting user input, and displaying results, is the JOptionPane class. This is
located in the javax.swing library. The JOptionPane class allows you to have input boxes like this one:

And message boxes like this:

The first thing to do is to reference the library we want to use:

import javax.swing.JOptionPane;

This tells java that we want to use the JOptionPane class, located in the javax.swing library.

Add the import line to your new project, and your code window should look like something like this:

22

Daniel Ugochukwu Onovo
UB81898CO91115

(The reason for the wavy underline is that we haven't used the JOptionPane class yet. It will go away
once we do.)

To get an input box that the user can type into, we can use the showInputDialog method of
JOptionPane. We'll store the input straight into a first name variable again, as done previously. So
add the following line to your main method:

String first_name;
first_name = JOptionPane.showInputDialog("First Name");

As soon as full stop is typed after JOptionPane the following popup list will appear:

Double click showInputDialog. In between the round brackets of showInputDialog type the message
that you want displayed above the input text box. We've typed "First name". Like all strings, it needs
to go between double quotes.

Add the following code so that we can get the user's family name:

String family_name;
family_name = JOptionPane.showInputDialog("Family Name");

23

Daniel Ugochukwu Onovo
UB81898CO91115

Join the two together, and add some text:

String full_name;
full_name = "You are " + first_name + " " + family_name;

To display the result in a message box, add the following:

JOptionPane.showMessageDialog(null, full_name);

This time, showMessageDialog from the popup list should be used. Inside the parentheses, the keyword
null is placed first, signifying that the message box isn't associated with any other part of the
program. After a comma, the text to be displayed in the message box is added. The complete code
should look like this:

The line at the bottom of the code: System.exit(0); ensures that the programme exits. It also help in
removing all the created objects from memory.

When the code is run the First Name input box will be shown. Type something into it, then click OK:

TIP: (Another quick way to run your programme in NetBeans is by right-clicking anywhere inside of
the coding window. From the menu that appears, select Run File.)

24

Daniel Ugochukwu Onovo
UB81898CO91115

When the Family Name input box appears, type a family name and click OK:

After you click OK, the message box will display:

Click OK to end the programme.

6.0 VARIABLE DECLARATION AND INITIALIZATION IN JAVA

Java is a statically typed language, which means you must specify the type of each variable explicitly.

In Java, you need to declare the type of the variable before you use it.

Syntax for declaring a variable:

type variableName;

Syntax for initializing a variable:

variableName = value;

Declaration and initialization in one line:

25

Daniel Ugochukwu Onovo
UB81898CO91115

type variableName = value;

Example:

int age = 25;

float temperature = 98.6f;

boolean isJavaFun = true;

char initial = 'J';

 Numberused in the last code line above joining the string, first number and variable, first number

i.e The output for running the above code is shown in the image below

Let’s create a simple Java code that can add up the value of two variables

26

Daniel Ugochukwu Onovo
UB81898CO91115

Reference data types

Reference data types refer to objects and arrays. They are used to store references to data rather
than the data itself.

Example:

String name = "John Doe";

int[] numbers = {1, 2, 3, 4, 5};

Variable Scope

Variables in Java have different scopes depending on where they are declared:

• Local Variables: Declared inside a method or block. They must be initialized before use.

27

Daniel Ugochukwu Onovo
UB81898CO91115

• Instance Variables: Declared inside a class but outside any method. They are initialized to
default values (e.g., 0 for integers, null for objects).

• Class Variables (Static Variables): Declared with the static keyword. Shared among all
instances of a class.

Example:

public class MyClass {

 // Class variable

 static int classVariable = 10;

 // Instance variable

 int instanceVariable;

 public void myMethod() {

 // Local variable

 int localVariable = 5;

 System.out.println(localVariable);

 }

}

 Constants

Constants are variables whose value cannot be changed once assigned. Constants can defined using

the final keyword.

Example:

public class Constants {

 public static final double PI = 3.14159;

}

Type Casting

Sometimes you need to convert a variable from one type to another. This process is known as type
casting.

Implicit Casting (Widening Conversion):

int intValue = 10;

double doubleValue = intValue; // Automatically done

Explicit Casting (Narrowing Conversion):

double doubleValue = 10.5;

int intValue = (int) doubleValue; // Manual casting

28

Daniel Ugochukwu Onovo
UB81898CO91115

String Manipulation

In Java, strings are objects of the String class. They are immutable, meaning their values cannot be
changed once created.

Example:

String greeting = "Hello";

String name = "World";

String message = greeting + " " + name; // Concatenation

System.out.println(message); // Output: Hello World

Basic rules in working with Variables

• Use meaningful variable names: Names should describe the purpose of the variable.

• Follow naming conventions: For instance, use camelCase for variable names (myVariable).

• Initialize variables: Ensure variables are initialized before use to avoid unpredictable behavior.

7.0 JAVA ARRAY:

An array is a group of similar typed variables that are referred to by a common name. Arrays of any
type can be created and may have one or more dimensions. A specific element in an array is
accessed by its index. The array is a simple type of data structure which can store primitive variable
or objects. For example, imagine if you had to store the result of six subjects we can do it using an
array. To create an array value in Java, you use the new keyword, just as you do to create an object.

7.1 Defining and constructing one dimensional array

Here, type specifies the type of variables (int, boolean, char, float etc) being stored, size specifies the
number of elements in the array, and arrayname is the variable name that is the reference to the
array. Array size must be specified while creating an array. If you are creating a int[], for example,
you must specify how many int values you want it to hold (in above statement resultArray[] is having
size 6 int values). Once an array is created, it can never grow or shrink.

29

Daniel Ugochukwu Onovo
UB81898CO91115

7.2 Initializing array: You can initialize specific element in the array by specifying its index within
square brackets. All array indexes start at zero.

resultArray[0]=69;

This will initialize first element (index zero) of resultArray[] with integer value 69. Array elements can
be initialized/accessed in any order. In memory, it will create a structure similar to below figure.

7.3 Array Literals

The null literal used to represent the absence of an object can also be used to represent the absence
of an array. For example:

String [] name = null;

In addition to the null literal, Java also defines a special syntax that allows you to specify array values
literally in your programs. This syntax can be used only when declaring a variable of array type. It
combines the creation of the array object with the initialization of the array elements:

String[] daysOfWeek = {“Sunday”, “Monday”, “Tuesday”,

“Wednesday”, “Thursday”, “Friday”, “Saturday”};

This creates an array that contains the seven string element representing days of the week within the
curly braces. Note that we don't use the new keyword or specify the type of the array in this array
literal syntax. The type is implicit in the variable declaration of which the initializer is a part. Also, the
array length is not specified explicitly with this syntax; it is determined implicitly by counting the
number of elements listed between the curly braces.

30

Daniel Ugochukwu Onovo
UB81898CO91115

Let’s see sample java program to demonstrate this concept. This program will help to understand
initializing and accessing specific array elements.

package arrayDemo;

import java.util.Arrays;

public class ResultListDemo {

 public static void main(String[] args) {

 //Array Declaration

 int resultArray[] = new int[6];

 //Array Initialization

 resultArray[0]=69;

 resultArray[1]=75;

 resultArray[2]=43;

 resultArray[3]=55;

 resultArray[4]=35;

 resultArray[5]=87;

 //Array elements access

 System.out.println("Marks of First Subject- "+ resultArray[0]);

 System.out.println("Marks of Second Subject- "+ resultArray[1]);

 System.out.println("Marks of Third Subject- "+ resultArray[2]);

 System.out.println("Marks of Fourth Subject- "+ resultArray[3]);

 System.out.println("Marks of Fifth Subject- "+ resultArray[4]);

 System.out.println("Marks of Sixth Subject- "+ resultArray[5]);

 }

}

Output:

Alternative syntax for declaring, initializing of array in the same statement

int [] resultArray = {69,75,43,55,35,87};

7.4 Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you might expect, look and
act like regular multidimensional arrays. However, as you will see, there are a couple of subtle
differences. To declare a multidimensional array variable, specify each additional index using another
set of square brackets. For example, the following declares a two-dimensional array variable called
twoDim. This will create a matrix of the size 2x3 in memory.

31

Daniel Ugochukwu Onovo
UB81898CO91115

int twoDim[][] = new int[2][3];

Let’s have look at below program to understand 2-dimentional array

package arrayDemo;

public class twoDimArrayDemo {

 public static void main (String []args){

 int twoDim [][] = new int [2][3];

 twoDim[0][0]=1;

 twoDim[0][1]=2;

 twoDim[0][2]=3;

 twoDim[1][0]=4;

 twoDim[1][1]=5;

 twoDim[1][2]=6;

 System.out.println(twoDim[0][0] + " " + twoDim[0][1] + " " +

twoDim[0][2]);

 System.out.println(twoDim[1][0] + " " + twoDim[1][1] + " " +

twoDim[1][2]);

 }

}

Output:

7.5 Inbuilt Helper Class (java.util.Arrays) for Arrays Manipulation:

Java provides very important helper class (java.util.Arrays) for array manipulation. This class has
many utility methods like array sorting, printing values of all array elements, searching of an element,
copy one array into another array etc. Let’s see sample program to understand this class for better
programming. In below program float array has been declared. We are printing the array elements
before sorting and after sorting.

package arrayDemo;

import java.util.Arrays;

32

Daniel Ugochukwu Onovo
UB81898CO91115

public class ArraySortingDemo {

 public static void main(String[] args) {

 //Declaring array of float elements

 float [] resultArray = {69.4f,75.3f,43.22f,55.21f,35.87f,87.02f};

 System.out.println("Array Before Sorting- " +

Arrays.toString(resultArray));

 //below line will sort the array in ascending order

 Arrays.sort(resultArray);

 System.out.println("Array After Sorting- " +

Arrays.toString(resultArray));

 }

}

Output:

Similar to “java.util.Arrays” System class also has a functionality of efficiently copying data from one
array to another. Syntax as below,

public static void arraycopy(Object src, int srcPos,Object dest, int destPos, int

length)

The two Object arguments specify the array to copy from and the array to copy to. The three int
arguments specify the starting position in the source array, the starting position in the destination
array, and the number of array elements to copy.

Important points:

• You will get “ArrayIndexOutOfBoundsException” if you try to access an array with an illegal
index, that is with a negative number or with a number greater than or equal to its size.

• Arrays are widely used with loops (for loops, while loops). There will be more sample program
of arrays with loops tutorial.

8.0 USING OPERATORS IN JAVA:

Before delving into control structure in programming it’s important to look at in Java. Java has the
following operators:

1. Conditional or Relational Operators
2. Arithmetic Operators

33

Daniel Ugochukwu Onovo
UB81898CO91115

3. Logical Operators

Assignment Operators

8.1 Assignment Operators

Operator Name Example Equivalent

= Assignment X=10 A holds 10

+= Addition assignment i+=5; i=i+5

-= Subtraction assignment j-=10; j=j-10;

= Multiplication assignment k=2; k=k*2;

/= Division assignment x/=10; x=x/10;

%= Remainder assignment a%=4; a=a%4;

Below is the sample program explaining assignment operators:

public class AssignmentOperatorDemo {

 public static void main(String[] args) {

 //Literal Primitive Assignment

 byte b = 25;

 System.out.println("Primitive byte Assignment- "+ b);

 //Assigning one primitive to another primitive

 byte c =b;

 System.out.println("Primitive byte Assignment from another byte

variable- "+ c);

 //Literal assignment based on arithmetic operation

 int a = 23+b;

 System.out.println("Primitive int Assignment from arithmetic

operation- "+ a);

 //Implicit Casting of variable x and y

 short s = 45;

 int x = b;

 int y = s;

 System.out.println("Implicit Casting of byte to int- "+ x);

 System.out.println("Implicit Casting of short to int- "+ y);

 //Short-Hand Assignment Operators

 int i = 10;

 i+=10;

 System.out.println("Addition Oprator- "+ i);

 i-=10;

 System.out.println("Subtraction Oprator- "+ i);

 i*=10;

 System.out.println("Multiplication Operator- " + i);

 i/=10;

 System.out.println("Division Operator- " + i);

 i%=3;

 System.out.println("Reminder Operator- " + i);

 }

}

34

Daniel Ugochukwu Onovo
UB81898CO91115

Output:

8.2 Arithmetic Operators

Operator Use Description Example

+ x + y Adds x and y float num = 23.4 + 1.6; // num=25

- x - y Subtracts y from x long n = 12.456 – 2.456; //n=10

-x Arithmetically negates x int i = 10; -i; // i = -10

* x * y Multiplies x by y int m = 10*2; // m=20

/ x / y Divides x by y float div = 20/100 ; // div = 0.2

% x % y Computes the remainder of dividing x by y (Modulus) int rm = 20/3; // rm = 2

The following simple program demonstrates the arithmetic operators. It also illustrates the difference

between floating-point division and integer division.

public class ArithmeticOperatorDemo {

 // Demonstrate the basic arithmetic operators.

 public static void main(String args[]) {

 // arithmetic using integers

 System.out.println("Integer Arithmetic");

 int i = 1 + 1;

 int n = i * 3;

 int m = n / 4;

 int p = m - i;

 int q = -p;

 System.out.println("i = " + i);

 System.out.println("n = " + n);

 System.out.println("m = " + m);

 System.out.println("p = " + p);

 System.out.println("q = " + q);

 // arithmetic using doubles

 System.out.println("\nFloating Point Arithmetic");

 double a = 1 + 1;

 double b = a * 3;

35

Daniel Ugochukwu Onovo
UB81898CO91115

 double c = b / 4;

 double d = c - a;

 double e = -d;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 System.out.println("d = " + d);

 System.out.println("e = " + e);

 }

}

Output:

The program below demonstrate use of modulus:

public class RemainderDemo {

 public static void main (String [] args) {

 int x = 15;

 int int_remainder = x % 10;

 System.out.println("The result of 15 % 10 is the "

 + "remainder of 15 divided by 10. The remainder is

" + int_remainder);

 double d = 15.25;

 double double_remainder= d % 10;

 System.out.println("The result of 15.25 % 10 is the "

 + "remainder of 15.25 divided by 10. The remainder

is " + double_remainder);

 }

}

Output:

36

Daniel Ugochukwu Onovo
UB81898CO91115

Also, there are a couple of quirks to keep in mind regarding division by 0:

• A non-zero floating-point value divided by 0 results in a signed Infinity. 0.0/0.0 results isNaN.
• A non-zero integer value divided by integer 0 will result in ArithmeticException at runtime

8.3 Conditional or relational Operators

Operator Description Example (a=10, b=15) Result

== Equality operator a==b false

!= Not Equal to operator a!=b true

> Greater than a>b false

< Less than a<b true

>= Greater than or equal to a>=b false

<= Less than or equal to a<=b true

The program below demonstrates the use of conditional operators

public class IfelseLadderDemo {

 public static void main(String[] args) {

 int a =120;

 if(a< 100){

 System.out.println("Variable is less than 100");

 }

 else if(a==100)

 {

 System.out.println("Variable is equal to 100");

 }

 else if (a>100)

 {

 System.out.println("Variable is greater than 100");

 }

 }

}

37

Daniel Ugochukwu Onovo
UB81898CO91115

8.4 Logical
OperatorsS/NO

OPERATOR DESCRIPTION

1 Returns true if both operands are true.

2 Returns true if at least one of the operands is true.

3

4 Inverts the value of a boolean expression

Here’s a simple example demonstrating logical operators in a conditional statement:

public class LogicalOperatorsExample {

 public static void main(String[] args) {

 int age = 20;

 boolean hasLicense = true;

 if (age >= 18 && hasLicense) {

 System.out.println("You can drive.");

 } else {

 System.out.println("You cannot drive.");

 }

 }

}

9.0 CONTROL STRUCTURE IN JAVA

Control structures in programming generally are fundamental constructs that dictate the flow of
execution of code. They enable programmers to create complex logic by controlling how statements
are executed based on certain conditions or iterations. The main types of control structures are:

1. Sequential Control: The default mode where statements are executed in the order they
appear.

2. Selection (Conditional) Control: Allows for decision-making in code. Common structures
include:

o if statements: Execute a block of code if a condition is true.
o else statements: Provide an alternative block when the condition is false.
o switch statements: Selects one of many code blocks to execute based on the value of

a variable.
3. Repetition (Looping) Control: Executes a block of code multiple times. Common types

include:
o for loops: Repeat a block a specific number of times.
o while loops: Continue executing as long as a condition remains true.
o do-while loops: Similar to while, but the block is executed at least once.

Java as a programming language is not exempted in utilizing these concepts of control structure in

defining the flow of code execution in a program. In all the codes that has been used so far,

38

Daniel Ugochukwu Onovo
UB81898CO91115

sequential control structure has been used. At this point lets look at Conditional and Repetition

Control Structure.

9.1 Java IF Statement (Conditional)

/condition

Output/Display MessageHere’s a simple example of If Statement in use:

Here is an expansion of the above code with an

Here’s the output on running the above code:

9.2 JAVA IF … ELSE Statement:

The if...else statement in Java is used for decision-making in your code. It allows you to execute a

block of code based on whether a condition is true or false

Here's the basic syntax:

39

Daniel Ugochukwu Onovo
UB81898CO91115

if (condition) {

 // Code to execute if the condition is true

} else {

 // Code to execute if the condition is false

}

Let's look at an example where we check whether a number is even or odd:

import java.util.Scanner;

public class EvenOddChecker {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter a number: ");

 int number = scanner.nextInt();

 if (number % 2 == 0) {

 System.out.println(number + " is even.");

 } else {

 System.out.println(number + " is odd.");

 }

 scanner.close();

 }

}

Here is a breakdown explanation of the above code:

Input: The program prompts the user to enter a number.
Condition: The if statement checks if the number is divisible by 2 (number % 2 == 0).
Output: If the condition is true, it prints that the number is even; otherwise, it prints that the number

is odd.

9.3 Using the ELSE IF Statement:

The else if is used to check multiple conditions in a program:

Here is the syntax of it:

if (condition1) {

 // Code for condition1

} else if (condition2) {

 // Code for condition2

} else {

 // Code if neither condition1 nor condition2 is true

}

Here’s a modified example that categorizes a number as positive, negative, or zero using the Else If
statement:

40

Daniel Ugochukwu Onovo
UB81898CO91115

import java.util.Scanner;

public class NumberSignChecker {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter a number: ");

 int number = scanner.nextInt();

 if (number > 0) {

 System.out.println(number + " is positive.");

 } else if (number < 0) {

 System.out.println(number + " is negative.");

 } else {

 System.out.println("The number is zero.");

 }

 scanner.close();

 }

}

9.4 Switch Statements in Java:

Here is an example code to demonstrate the use of switch statement:

 must be “spelt out”9.5 Loop in Java

Java loops are fundamental constructs that allow you to execute a block of code repeatedly based on certain

conditions. There are three primary types of loops in Java: for, while, and do-while. Each serves different

41

Daniel Ugochukwu Onovo
UB81898CO91115

use cases and has unique syntax and behavior. Let's explore these loops in detail, along with examples and

common use cases.

9.6 For Loop in Java:

The for loop is typically used when the number of iterations is known beforehand. It consists of three
parts: initialization, condition, and iteration.

Syntax:

for (initialization; condition; iteration) {

 // Code to be executed

}

Example:

for (int i = 0; i < 5; i++) {

 System.out.println("Iteration: " + i);

}

Explanation:

• Initialization: int i = 0 initializes the loop counter.
• Condition: i < 5 checks if the loop should continue.
• Iteration: i++ increments the counter after each iteration.

Common Use Cases:

• Iterating over arrays or collections.
• Executing a block of code a specific number of times.

9.7 While Loop:

The while loop is used when the number of iterations is not known in advance and depends on a
condition. The loop continues as long as the specified condition evaluates to true.

Syntax:

while (condition) {

 // Code to be executed

}

Example:

int i = 0;

while (i < 5) {

 System.out.println("Iteration: " + i);

42

Daniel Ugochukwu Onovo
UB81898CO91115

 i++;

}

Explanation:

• The loop continues as long as i < 5 is true.
• The counter i is incremented within the loop.

Here's a Java program that demonstrates the use of a while loop. This program will prompt the
user to enter a number and will keep asking for numbers until the user enters a negative number.
The program will also calculate and display the sum of all positive numbers entered.

import java.util.Scanner;

public class WhileLoopDemo {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

int number;

int sum = 0;

System.out.println("Enter numbers to sum them up (enter a negative

number to stop):");

// Using a while loop to continuously ask for input

while (true) {

number = scanner.nextInt(); // Read user input

if (number < 0) {

break; // Exit the loop if the number is negative

}

sum += number; // Add the number to the sum

}

System.out.println("The sum of all positive numbers entered is: " +

sum);

scanner.close();

}

}

Common Use Cases:

• Reading data until a certain condition is met (e.g., user input).
• Continuously checking for an event or a state.

9.8 Do …. While Loop:

In Java, a do-while loop is used to execute a block of code at least once and then repeat the loop as
long as a specified condition is true. The syntax for a do-while loop is as follows:

43

Daniel Ugochukwu Onovo
UB81898CO91115

do {

 // Code to be executed

} while (condition);

Key Points to Note When Using Do …. while statement

• The code inside the do block is executed first.
• After executing the block, the condition is checked.
• If the condition is true, the loop repeats; if false, the loop ends.

Here's a simple example that demonstrates the use of a do-while loop to print numbers from 1 to 5:

public class DoWhileExample {

 public static void main(String[] args) {

 int number = 1;

 do {

 System.out.println(number);

 number++;

 } while (number <= 5);

 }

}

Explanation of the above code:

1. The variable number is initialized to 1.
2. The do block prints the value of number and increments it.
3. The condition number <= 5 is checked after the block executes.
4. The loop continues until number is greater than 5.

When to use the Do …. While statement:

• Use a do-while loop when you need to ensure that the loop body is executed at least once, such as
when prompting user input.

10.0 OBJECT ORIENTED PROGRAMMING IN JAVA

Object-Oriented Programming (OOP) is a programming paradigm based on the concept of "objects," which

can contain data and code: data in the form of fields (often known as attributes or properties) and code in the

form of procedures (often known as methods). Java, being a fully object-oriented programming language,

supports the four main principles of OOP: Object, Class, Method, encapsulation, inheritance, polymorphism,

and abstraction.

10.1 Class in Java

A class is a blueprint for creating objects. It defines a datatype by bundling data (attributes) and
methods (functions) that operate on that data. A class encapsulates the properties and behaviors of
an object.

44

Daniel Ugochukwu Onovo
UB81898CO91115

Syntax of Class

class ClassName {

 // Attributes (fields)

 type fieldName;

 // Constructor

 ClassName(parameters) {

 // Initialization code

 }

 // Methods

 returnType methodName(parameters) {

 // Method body

 }

}

Program example on class

class Dog {

 // Attributes

 String name;

 String breed;

 int age;

 // Constructor

 public Dog(String name, String breed, int age) {

 this.name = name;

 this.breed = breed;

 this.age = age;

 }

 // Method to display dog details

 public void displayInfo() {

 System.out.println("Dog Name: " + name);

 System.out.println("Breed: " + breed);

 System.out.println("Age: " + age);

 }

}

10.2 Object in Java

An object is an instance of a class. When a class is defined, no memory is allocated until an object of
that class is created. Objects can represent real-world entities with states and behaviors.

Creating Object

public class Main {

 public static void main(String[] args) {

 // Creating an object of the Dog class

 Dog myDog = new Dog("Buddy", "Golden Retriever", 3);

 // Calling method on the object

 myDog.displayInfo();

45

Daniel Ugochukwu Onovo
UB81898CO91115

 }

}

Output:

Dog Name: Buddy

Breed: Golden Retriever

Age: 3

10.3 Method in Java

A method is a block of code that performs a specific task. Methods are defined inside a class and can
manipulate the object’s attributes. Methods can be of different types, including instance methods,
class methods (static methods), and more.

Defining Methods

class Calculator {

 // Method to add two integers

 public int add(int a, int b) {

 return a + b;

 }

 // Method to multiply two integers

 public int multiply(int a, int b) {

 return a * b;

 }

}

Using Methods

public class Main {

 public static void main(String[] args) {

 Calculator calculator = new Calculator();

 // Using methods of the Calculator class

 int sum = calculator.add(5, 3);

 int product = calculator.multiply(4, 6);

 System.out.println("Sum: " + sum); // Output: Sum: 8

 System.out.println("Product: " + product); // Output: Product: 24

 }

}

10.4 Method Overloading

In Java, you can have multiple methods in the same class with the same name but different
parameter lists. This is known as method overloading.

46

Daniel Ugochukwu Onovo
UB81898CO91115

class MathUtils {

 // Method to add two integers

 public int add(int a, int b) {

 return a + b;

 }

 // Method to add three integers

 public int add(int a, int b, int c) {

 return a + b + c;

 }

 // Method to add two doubles

 public double add(double a, double b) {

 return a + b;

 }

}

Let’s combine everything into a single example that demonstrates classes, objects, and methods in
action.

class Car {

 // Attributes

 String model;

 String color;

 int year;

 // Constructor

 public Car(String model, String color, int year) {

 this.model = model;

 this.color = color;

 this.year = year;

 }

 // Method to display car details

 public void displayInfo() {

 System.out.println("Model: " + model);

 System.out.println("Color: " + color);

 System.out.println("Year: " + year);

 }

 // Method to start the car

 public void start() {

 System.out.println(model + " is starting.");

 }

}

public class Main {

 public static void main(String[] args) {

 // Creating an object of the Car class

 Car myCar = new Car("Toyota Camry", "Blue", 2022);

 // Calling methods on the Car object

 myCar.displayInfo();

 myCar.start();

 }

}

47

Daniel Ugochukwu Onovo
UB81898CO91115

Output:

Model: Toyota Camry

Color: Blue

Year: 2022

Toyota Camry is starting.

10.5 Encapsulation

Encapsulation is the bundling of data and methods that operate on that data within a single unit, or
class. It restricts access to certain components, which helps to prevent accidental interference and
misuse of the methods and data.

Example:

class BankAccount {

 private String accountNumber;

 private double balance;

 public BankAccount(String accountNumber) {

 this.accountNumber = accountNumber;

 this.balance = 0.0;

 }

 public void deposit(double amount) {

 if (amount > 0) {

 balance += amount;

 System.out.println("Deposited: " + amount);

 } else {

 System.out.println("Deposit amount must be positive.");

 }

 }

 public void withdraw(double amount) {

 if (amount > 0 && amount <= balance) {

 balance -= amount;

 System.out.println("Withdrew: " + amount);

 } else {

 System.out.println("Insufficient funds or invalid amount.");

 }

 }

 public double getBalance() {

 return balance;

 }

}

In this example, the BankAccount class encapsulates the properties accountNumber and balance.
These properties are private, meaning they cannot be accessed directly from outside the class.
Instead, public methods like deposit, withdraw, and getBalance are provided for interacting with these
properties.

48

Daniel Ugochukwu Onovo
UB81898CO91115

10.6 Inheritance

Inheritance is a mechanism in which one class can inherit the fields and methods of another class.
This promotes code reusability.

Example:

class SavingsAccount extends BankAccount {

 private double interestRate;

 public SavingsAccount(String accountNumber, double interestRate) {

 super(accountNumber); // Call the constructor of the superclass

 this.interestRate = interestRate;

 }

 public void applyInterest() {

 double interest = getBalance() * interestRate / 100;

 deposit(interest); // Use the deposit method from the parent class

 System.out.println("Applied interest: " + interest);

 }

}

In this example, SavingsAccount extends BankAccount, inheriting its methods and properties while

also introducing a new method applyInterest specific to savings accounts.

10.7 Polymorphism

Polymorphism allows methods to do different things based on the object that it is acting upon, which
can be achieved through method overloading and method overriding.

class CheckingAccount extends BankAccount {

 public CheckingAccount(String accountNumber) {

 super(accountNumber);

 }

 @Override

 public void withdraw(double amount) {

 // Additional check for overdraft

 if (amount > getBalance()) {

 System.out.println("Overdraft allowed, with withdrawal: " + amount);

 } else {

 super.withdraw(amount);

 }

 }

}

Here, CheckingAccount overrides the withdraw method of the BankAccount class. If the amount to be
withdrawn exceeds the balance, it allows the overdraft.

Example: Method Overloading

class Calculator {

49

Daniel Ugochukwu Onovo
UB81898CO91115

 public int add(int a, int b) {

 return a + b;

 }

 public double add(double a, double b) {

 return a + b;

 }

 public int add(int a, int b, int c) {

 return a + b + c;

 }

}

In this case, the add method is overloaded to handle different parameter types and numbers.

10.8 Abstraction

Abstraction is the concept of hiding complex implementation details and showing only the essential
features of the object. In Java, abstraction can be achieved using abstract classes and interfaces.

Example: Abstract Class

abstract class Shape {

 abstract void draw();

}

class Circle extends Shape {

 void draw() {

 System.out.println("Drawing a circle");

 }

}

class Rectangle extends Shape {

 void draw() {

 System.out.println("Drawing a rectangle");

 }

}

The Shape class is an abstract class that cannot be instantiated. It defines a method draw, which is
implemented by its subclasses Circle and Rectangle.

Example: Interface

interface Drawable {

 void draw();

}

class Triangle implements Drawable {

 public void draw() {

 System.out.println("Drawing a triangle");

 }

}

class Square implements Drawable {

50

Daniel Ugochukwu Onovo
UB81898CO91115

 public void draw() {

 System.out.println("Drawing a square");

 }

}

In this example, Drawable is an interface that declares a draw method. Both Triangle and Square
classes implement this interface.

51

Daniel Ugochukwu Onovo
UB81898CO91115

12.0 CONCLUSION

In conclusion, Java remains a powerful and versatile programming language that continues to play a

significant role in software development. Its platform independence, robust community support, and

extensive libraries make it an ideal choice for a wide range of applications, from web development to

mobile apps and enterprise solutions. Java's emphasis on object-oriented principles promotes code

reusability and maintainability, allowing developers to create scalable applications efficiently. As

technology evolves, Java's adaptability ensures that it remains relevant, empowering developers to

tackle modern challenges with confidence. Whether you’re a beginner or an experienced

programmer, mastering Java opens up numerous opportunities in the ever-changing landscape of

technology.

52

Daniel Ugochukwu Onovo
UB81898CO91115

BIBLIOGRAPHY

1. Herbert Schildt (2019). Java: A Beginner's Guide. McGraw-Hill Education Publishers

2. E. Balagurusamy (2015). Programming in Java. McGraw-Hill Education Publishers.

3. JAVA WITH NETBEANS. Source: http://www.homeandlearn.co.uk/java/java.html

4. JAVA INTRODUCTION. Source: https://www.w3schools.com/java/java_intro.asp

5. COURSE MODULE OUTLINE: https://www.chatgpt.com/

6. JAVA PROGRAMMING. Source: https://w3resource.com/java-tutorial/java-program-

structure.php

