[image:]

NAME Recardo House

STUDENT ID: UB73367SC082527

PROGRAM: Bachelors in Computer Engineering

COURSE NAME
[bookmark: _GoBack]Programming Language for Object

ATLANTIC INTERNATIONAL UNIVERSITY
August 2021
TABLE OF CONTENTS
INTRODUCTION ……………………………………….………………………………….……………………1
Introduction Object-Oriented Programming Overview……..…………………...………………………………………………………..1
Benefits of Object-Oriented…………….…………………………………………………………………… ………………………… ….2
Real World Apprehension………………………………………………………………..……………………….…….…………….……..2
Stability of Design ...2
Reusability….…….………………………………………………………………………………………………..……………………….…3
Object-Oriented Programming and BETA…………….………………………………………………………..…….………..……….…3
System Development Methods…………………………...6
Logical Versus Physical System Structure……………………………………. ……………………………….……………………….6
BETA……..……………………………………………………………………………………………………….……….……………….…7
Introduction to Basic Concepts………………………………………………….…………….……………………………………………8
Procedural Programming……………………………………………………………………………………...9
Computers…………………………………..……………………………………….………….……………………………………………11
Computer Programming Language……………………………………………………….…………………………………………….…12
Software Systems……………………………………………..…………………………………………………………………..………...12
General Programming Language ………………………..………..…………………………...…………………………………….…...14
The Major Constructs of Structured Programming Languages ………………………………………………………………..………15
Control Structures……...16
CONCLUSION .….……………………………...17
BLIOGRAPHY ….………………………………..………………………………………………..………….18

1 of 1

CHAPTER 1

Object-Oriented Programming
Overview:
INTRODUCTION
…………………………………………………………………………
Programming language often characterized an object-oriented language, a
functional language, procedural language, etc. Term multi-perspective (or multi-
paradigm) language is used languages supporting more than one perspectives.
“object-oriented language” used for languages that only support object-orientation.
Object-oriented language a programming language support object-oriented
Programming, a pure object-oriented language a programming language only
supports object-orientation.

(Lehrmann & Moller, 1993)

 1 of 2
Benefits of object-orientation
The benefits of object-orientation are considered to be. Three main benefits: real word
apprehension, stability of design and reusability of both designs and implementations.
Let’s consider all three to be important, though perhaps not equally so.

Real world apprehension
The object-oriented programming is widely accepted is that object-orientation is close to
own natural perception of real world. (Krogdahl and Olsen, 1986) (translated from
Norwegian) put it this way:
The philosophy underlying object-oriented programming to make programs far as
possible part of reality they are doing to treat. It easier to understand to get an overview
what is described in programs. Human being from outset used and trained in perception
what going in the real world. Thinking of using this programming language, the easier to
write and understand programs.

In (Coad and Yourdon, 1990) is stated in the following way:
 ‘Object-oriented analysis based upon concepts that we first learned in:
 Kindergarten ‘objects and attributes, classes and members, wholes and parts.’
The quotations stress one important aspect of program development understand,
describe and communicate phenomena concepts of application domain. Object-oriented
programming turned to be particularly suited for doing this.

Stability of design
The Jackson System Development (JSD) principle method, (Jackson, 1983) reflects the
benefits of object-orientation. The first step system’s development to JSD is to make
physical model of real world which the system concerned. The basic for this model
1 of 3
forms different functions the system may have. Function changed later, and new
functions may added without changing underlying model.
 The physical model introduced by JSD central to object-orientation. Concept and
techniques used by JSD method develop a physical model, to subsequently implement
on computer are, different from concepts and techniques object-oriented programming.
Object-oriented programming provides natural framework modeling application domain.

Reusability
The only problem with software development is to reuse existing software components
when developing new ones. The existing component often similar to one needed for
new system. There important differences make it impossible to reuse existing
component. New component implemented by copying and modifying existing
component, it must be tested again. If error is detached one, it must be correct in both
components.
 The benefits of object-oriented programming language modification. A new
component excremental extension of existing one, preserving relation between two
component. Some object-oriented languages baes on class/subclass mechanism first
appeared in Simula. The Smalltalk was that these language constructs combined
flexibility of Lisp systems.
Without Smalltalk, Ability to create programs by incremental extension the advantage of
object-oriented programming by many programmers. Disadvantage of incremental
modification that library components reflects historic development these components.
Relationship between components dictated by maximal code sharing, conflicting with
modeling requirement.
 (Lehrmann & Moller, 1993)
Object-oriented programming and BETA
1 of 4
To program is to understand: The information system development not just writing a
program that does the job. The development of this program revealed in-depth
understanding the application domain; otherwise, information system may not fit into the
organization. Development of systems is important that descriptions application domain
communicated between system specialists and organization.
There more to object-oriented programming than language constructs (true for any
programming language). The framework or semantic just important as the language.
 Other programming based some mathematical theory or model, with a theoretical
basis, object-oriented programming lack theoretical basis. Designing programming
language, benefit of conveying understanding the basic concepts on the language,
model does not have to be formal. Model underlying object-orientation by very natural
informal, part of model been formalized in terms programming languages. The
necessary order to create descriptions that executed on a computer. BETA can see as
formal notation describing parts of application domain to be formalized: BETA is formal
make it a precise meaning when executed on a computer. Programming language
defined in terms of mathematical model, this model not been contracted for BETA, its
useful for purpose consistency checking and formal verification.
 The informal concepts in system development process is important, there a greater
emphasis on concepts that formulated in terms of programming language. The system
development can be executed on a computer. System development, traditionally
organized into analysis, design and implementation, and concepts object-orientation
applied to all activities.

* Analysis. Primary gold of analysis to understand application domain. The relationship
concepts and phenomena from application domain be identified and described,
involving the system be developed. Important the concepts phenomena identified can
1 of 5
be communicated. The process useful in a high number of informal descriptions, it
difficult to communicate descriptions to non-computer specialists. Informal descriptions
have text mixture, graphics, sometimes incomplete program fragments. Graphic in
system descriptions important, in analysis as be important to graphical notation for the
descriptions.

* Design. This design concerned with constructing precise description can refined into
executable program. Informal concepts developed in analysis activity made into formal
concepts that is described by a programming language like BETA. Object-oriented
program will description of phenomena and concepts from application domain.

Graphical notation useful in design activity. Some programming language like BETA is
textual syntax, and often advantageous using graphic notations for program instead of
textual representation.

Analysis and design similar in descriptions that is meaningful terms of application
domain. Different in respect to their use of informal and formal descriptions.

* Implementation. This implement the design description on a computer, i.e. elements
concepts and phenomena from application domain described terms concepts that
executed on computer. These computer concepts do not represent concepts and
phenomena from application domain, i.e. program extended details that are
meaningless in application domain. Basic principles of two levels the same;
programming at different levels.
Designing and implementation are similar that programming language used for
descriptions. They differ that the elements design description be meaning in terms the
1 of 6
application domain, Whereas this not the case for implementation description.

System development methods
The above analysis, design and implementation give impression these activities ordered
in time (i.e. first analysis, design and then implementation). In some situations activities
may intermixed, the developer not be conscious of them. Many methods of organizing
system development process differ in number of ways. The object-oriented framework is
not completely independent.

Logical versus physical system structure
BETA is a language describing system (program execution) consisting objects and
patters, represent phenomena and concepts from application domain, others for
implementation purposes. BETA objects and patterns provide logical structure of a
system; BETA language provide mechanisms describing logical structure.
 BETA program (or BETA description) constructed in form of text in one or more files.
Program can exist number of variants for different computers, and exist in various
versions. Many consist of modules from library; may use many different programs.
BETA language don’t have mechanisms describing physical organization of BETA
program in terms of files, variants, and versions, etc., the physical structure of program
text considered independent of logical structure of program. Languages provide
language elements handling physical structure, e.g. modules are divided into interface
and implementation modules. This mechanisms are not part of BETA. It’s a language-
independent technique for organizing physical structure of a program text been
developed. Technique based context free grammar of language, correct sequence of
terminal and nonterminal symbols (called sentential form) of grammar be a module.

1 of 7
This technique used language other than BETA.
 The aspects of physical structure other than organization of program text. BETA
system have number of objects exacting actions, the actions expected objects may take
place concurrently.

 Some objects of BETA system transient the sense that only exist while program is
executing. Object are persistent in sense they store on secondary storage like disk and
survive program that created them. Can read and used by other programs. Separation
of objects into transient and persistent object not part of BETA language, handled by
Mjolner BETA system. Object-oriented database system supporting client and servers
currently being developed top of persistent object store the Mjolner BETA System.
 Modern computer hardware consists large number of processors connected to
communication media, example set of workstations connected to local area network.
The BETA program may realized through time sharing on single processor, distributing
BETA objects on number of processors. BETA constructs the logical structure of
concurrent object and physical structure mapping concurrent objects onto several
processors considered independent of language. The Mjolner BETA System contain
support for distribution computing in BETA.
 The mapping of BETA system, into a process generator (computer hardware)
splitting objects in transient and persistent objects and distribution objects to several
processors
 During design and implementation, programmer should be explicit about physical
organization of program text and concerned with organization of persistent and
distributed objects.

BETA
1 of 8
BETA a modern language in Simula tradition. That supports object-oriented on
programming and contains facilities for procedural and function programming.
 BETA replace classes, procedures, and functions types by single abstraction
mechanism called pattern. Virtual procedures to virtual patters, streamlines linguistic
notions like nesting and block structure, provide framework for sequential, co-routine
and concurrent execution. The language smaller than Simula in spite being more
expressive.
 Mjolner BETA System a software environment development supporting BETA
language incudes a implementation of BETA language. System includes number of
other tools, a collection of large libraries and frameworks greatly enhance BETA’s
usability providing large number of predefined patterns and objects.
 Mjolner BETA System originally part of Nordic Mjolner project, produced large
number other results. (Knudsen et al., 1992) collection of project’s results.

Introduction to Basic Concepts
 A computer executing program process consisting of various phenomena (example
phenomenon an object representing bank account of customer). Object represents
certain properties the real bank account, like its balance, deposits and withdrawals
preformed on the account. Objects reside in computer’s memory.
 Real world, customers and bank clerks perform actions change state of various bank
accounts. Certain point, balance of given account be DKK 500, a deposit of DKK 105
change its balance DKK 5105. Deposit example action performed in a bank; example of
other withdrawal of money, computation of interest, opening and closing accounts, etc.
Important to aware fact that actions ordered in time – most banks you deposit some
money before can carry out withdrawal.
 Process generated by computer phenomena representing action and states. State of
1 of 9
bank account represented object represented bank account accounts changing the
state bank account are represented by actions executed by the computer.
 Process generated by computer executing program called program execution.
Program executions is a class of processes called information processes. Production
process car in a factory, processing of customer orders in a company, money flow
between banks viewed as information processes.
 (Lehrmann & Moller, 1993)
Procedural programming
When computers invented they viewed as programmable calculator some people still
have this view.
 Simple calculator, may consist of register storing a value, number of operations like
add, sub, mult and div. enter a number into register and modify value using operations.
List of operations for a simple calculator:
 Enter V
 Add V
 Sub V
 Mult V
 result
Operations enter, add, sub, mult, div and result correspond to buttons on calculator; V
corresponds to number entered into a pad. The physical layout of calculator not concern
about, only interested in the functionality.
 Instead of one register calculator have several registers, intermediate results of
calculation be stored in registers -- only one register user would write down
intermediate results on paper. Assume calculators is extended with registers R0, R1,
R2, …Rn, previous operation operate R0. Following new operations:
 Enter V Ri
1 of 10
 Add Ri Rj
 Sub Ri Rj
 Mult Ri Rj
 Div Ri Rj
 Copy Ri Rj
Operands Ri and Rj correspond buttons selecting a register.
 Calculator with fixed number registers and operations has limited scope applications.
User carry out same procedure over and over again on different data, perhaps carrying
out same sequence of operations. Lead to a programmable calculator. Data registers
and operations, programmable calculator has store sequence of operations may be
stored:
 define Pi Op1; op2; …end
 call Pi
The define and call operations correspond bottoms for calling procedures. Pi be number
or another unique identification procedure being defined. Programming calculator be
used in following way:
 define P1: copy R0 R1; mult R0 2; add R0 R1 end
 enter 100
 call P1
 return
Store used storing procedures also used storing values, i.e. move value from a register
to store, and vice versa. It possible save large number of intermediate results.
Operations extended with control flow operations, possible select between sub-
sequences of operations repeat execution of sub-sequence. Example flow operations:
 L:
 goto L
1 of 11
 If Ri=0 goto L
Computers (Shouhong, 2014)
A computer general machine that is programmed to carry out computation and data
processing operations. The programs can changed by humans through programming,
computer can solve many problems. The computer has central processing unit (CPU),
interprets and executes programs, and primary memory, store program and data.
Computer system also include secondary memory, input device and out device, see
Figure 1.1. Input device converts human signals and data signals that processed by
CPU. Example input devices keyboard and mouse. Output device converts signals from
[image:]
CPU into form understandable to human. Example of output devices monitor and
printer. A primary memory, secondary memory also used to store program and data.
The programs and data store in primary memory cannot retained when power is turn off.
Secondary memory retain stored programs and when power is turn off. The CPU
access programs and data faster in primary memory than second memory. Programs
and data in secondary memory read batches into primary memory before used by CPU.
1 of 12
Computer Programming Languages
Computer programming language artificial language designed to communicate
instructions to computer. Programming languages used create programs that control
computer perform task designed. These are tasks computer carry out:
· Manipulating data and information
· Reading data from and /or writing data to secondary memory or other
 input/out devices
· Presenting data for human through user—computer interface
Many computer programming languages. Each computer programming language has
syntax.

Software systems
Software systems in computer structure in layer, Figure 1.2 below application software
build by software developer using high-level programming language easily understand
and use.

[image:]
 (Shouhong, 2014)
1 of 13
Programs in high-level programming language cannot executed by computer
unless programs translated into machine executed code (strings of binary digits).
Translate program in high-level programming language into machine executable code,
called compiler or interpreter for high-level language, must applied, show Figure 1.3 a
program in high-level programming language translated the machine-executable code,
can used infinite number of times.

Programmer Computer Compiler (interpreter) software

 Edith program
 Using program editor Execution

Machine Code
Translation
Programs in high-level computer programming language

Figure 1.3 Translation of computer programs
Program in high-level programming language has syntax error, translation will fail and
machine-executable code not be generated. A program without syntax error have
logical error, or semantic error, and final execution result be incorrect. To be sure
program executed correctly, computer programmer do the following three tasks.

1. Procedural language versus makeup language. A procedural language capable
commanding a computer to carry out arithmetic or logical operations. Programming
language except HTML and XML are procedural languages. Makeup language used
annotating document (or data set) in syntactically distinguishable text. HTML and XML
markup languages.
1 of 14
2. Function-oriented language versus object-oriented language. Function-oriented
language function as modules. C is typical function-oriented language. A computer l
language can be blended language of function-oriented and object-oriented language,
like JavaScript and VB.NET.
3. Client-side language versus server-side language. Client-side language used to
create computer programs that executed the client side on web. JavaScript and HTML
typical client-side languages. Programs in server-side language like PHP and AS.NET
executed by the Web server have greater access to information and functional
resources available on server response to client’s request.
 (Shouhong, 2014)

Generation of Programming Languages (Beynon, 1998)
The consensus there at least three generations of programming languages:
1. Machine code. That is earliest form of programming language, only one step
 removed from binary code by machine to perform instructions.
2. Assembly language. The first abstract detail machine and provide programmer
 with powerful set symbolic instructions to write programs.
3. High-level languages (known as thirund generation languages). These meant
 general-purpose programming languages removed from machine implementation.
 Language can divided into groupings such as imperative languages (FORTRAN,
 COBOL, C), functional languages (LIST), logic programming languages
 (PROLOG), and object-oriented languages (Smalltalk, C++). Imperative languages
 are widely used for information systems development, object-oriented languages
 are beginning to have influence in the development domain. Figure 1.4 show family
 tree of high-level languages.

1 of 15
[image:]

Figure 1.4 Family Tree of High-Level Languages
The Major Constructs of Structured Programming Languages
The building blocks most structured programming languages. A simple dialect of
language Pascal, language used in education circles and derivative of ALGOL.
 Most programming languages build out two constructs:
Statements
Statements the basic instructions of high-level languages. Statements command line
build from mixture of keywords, variables and constants. Examples valid Pascal
statements are:
balance :=balance + credit;
READ (credit);
WRITELN (Balance is’ , balance);
First statement assigns summation value in two placeholders or variable, balance and
credit, placeholder on left the ‘:=’ sign. Second statement read value file into variable.
third statement writes string to terminal screen.
1 of 16
Control Structures
Control structures, control the flow execution statements. Control structures come in
three forms: sequences; conditions; and loops.
Sequences: logical set statements. Pascal is encase sequences in keywords BEGIN
and END, called block, e.g.
BEGIN
 Balance :=balance + credit;
 WRITENLN (‘Balance is’, balance
END

BEGIN
 Balance := balance – debit;
 WRITELN (‘Balance is’, balance);
END;

Conditions: allow selection alternatives. There three forms of conditions:
1. Single-branched
 IF credit>0 THEN balance :=balance + credit;

2. Double-branched
IF transactionType = ‘C’ THEN
 Balance :=balance + credit
ELSE
 Balance :=balance – debit;

3. Multiple-branched
CASE transactionType OF
 “C”: balance :=balance + credit;
 “D” balance :=balance – debit;
 “P” WRITELN (‘Balance is’, balance);
END;

Countable loop.
FOR count := 1 to 10 DO
 BEGIN
 READ (credit);
1 of 17
 Balance :=balance + credit;
 Count :=count + 1
END;
While loop’ Test performed at start each iteration. If specified is true loop continues. If
condition false, loop terminates.
Count := 1
WHILE count<11 DO
 BEGIN
 READ (credit):
 Balance :=balance + credit;
 Count :=count +1
 END;

 (Beynon, 1998)

1 to 18
CONCLUSION
Object-oriented programming becoming ubiquitous paradigm in modern day computing.
It has many features of structure paradigm, like a structured movement that influenced
approaches to analysis, design and programming, the object-oriented has been an
impact upon systems analysis, system design, programming and recently data based
systems.

1 of 19
BLIOGRAPHY

Beynon, D. P. (1998). Information System Development. London: MACMILLAN PRESS Ltd.

Lehrmann, M. o., & Moller, P. B. (1993). Object-Oriented Programming in the Beta Programming Language. USA: Ass Computer Machinery.
Shouhong, W. H. (2014). Programming Language MIS: Concept and Practic . USA: Taylor & Francis Group CRC Press.

along the front end or back end. (Jon, 2007)
1 of 17
CONCLUSION

1 of 18
BLIOGRAPHY

John, H., & David, P. (2019). Computer Architecture. USA: Morgan kaufmann.

Jon, S. (2007). Introduction to Microprocessors and Computer Architecture. USA: No Starch Press, Inc.

Richard, D. (2015). 80x86 Assemble Language and Computer Architecture. USA: Jones & Bartlett Learning.

image3.png

image1.png

image2.png

image4.png

