

ANTHONY BABAJIDE BALOGUN

ID No: UB73361SIN82521

COURSE TOPIC:

PROGRAMMING PRINCIPLES AND ALGORITHMS

ATLANTIC INTERNATIONAL UNIVERSITY

APRIL 2022

TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 PROGRAMMIMG LANGUAGE 3

2.1 Definitions 3

3.0 TYPES OF PROGRAMMING LANGUAGE 5

 3.1 Machine Language 5

 3.2 Assembly Language 6

 3.3 High level language 7

4.0 CATEGORIES OF PROGRAMMING LANGUAGES 9

 4.1 Interpreted programming languages 9

 4.2 Functional programming languages 9

 4.3 Compiled Programming languages 10

 4.4 Procedural programming languages 10

 4.5 Scripting languages 10

 4.6 Markup languages 10

 4.7 Concurrent programming language 11

 4.8 Object oriented programming language 11

5.0 ALGORITHMS 12

 5.1 Properties of Algorithm 13

 5.2 Qualities of Algorithm 13

 5.3 Advantages of Algorithm 13

 5.4 Disadvantages of Algorithm 13

6.0 STEPS TO DESIGNING AN ALGORITHM 14

 6.1 C Programming Language 16

 6.2 C++ Programming Language 18

 6.3 Python3 Programming Language 20

7.0 NOTATIONS 22

7.1 FLOWCHARTS 22

 7.2 Rules for drawing a flowchart 23

 7.3 Advantages of flowchart 23

 7.4 Disadvantages of flowchart 23

8.0 PSEUDO CODE 24

 8.1 Features of Pseudo Code 24

 8.2 Guidelines for writing Pseudo Code 25

 8.3 Common keywords used in Pseudo Code 25

 8.4 Program Samples 26

9.0 CONCLUSION 29

10.0 BIBLIOGRAPHY 31

LIST OF FIGURES

Figure 1: What is the Binary Number System 4

Figure 2: Binary Numbers 4

Figure 3: What is algorithm? 12

Figure 4: Common Flowchart Symbols 22

1.0 INTRODUCTION

A programming language is defined as a set of symbols and rules for commanding

or instructing a computer to carry out or to perform specific tasks. These types of

symbols and rules are designed by some experienced and knowledgeable

personnel known as programmers who have to follow all the specified rules before

coding them using what is known as a programming language. As we may be

aware, computer only understand what is known as machine language otherwise

called binary numbers which is in form of O's and 1's.

An algorithm is defined as a step-by-step procedure or set of instructions for

solving a problem or accomplishing a task. Every known computerized device

makes use of algorithms to perform its functions. It makes life easier by reducing

the time it takes to manually do things and also allow workers to be more proficient.

Moreover, a programmer must make use of the five basic parts of an algorithm to

create a successful program. Firstly, he/she must describe or express the problem

at hand in mathematical terms before creating the formulas and processes that

creates results. Secondly, the programmer inputs the outcome parameters, and

then he/she executes the program repeatedly to test its functionality and accuracy.

The result is produced after the parameters has gone through the set of

instructions in the program.

 1

Furthermore, in this essay, I shall be writing on the Types of Programming

Language; Categories of Programming Language; Steps to Designing Algorithms;

Notations, Flowcharts and Pseudo Code including a program sample in one of the

favourite programming languages called JAVA compared to a Pseudo Code.

 2

2.0 PROGRAMMIMG LANGUAGE

2.1 Definitions

A programming language is defined as a set of symbols and rules for commanding

or instructing a computer to carry out or to perform specific tasks. These types of

symbols and rules are designed by some experienced and knowledgeable

personnel known as programmers who have to follow all the specified rules before

coding them using what is known as a programming language. As we may be

aware, computer only understand what is known as machine language otherwise

called binary numbers which is in form of O's and 1's.

The English-like instructions or codes must first be converted into binary numbers

before a computer can understand it, in other words, the user must communicate

with the computer using the language (binary numbers) which it can understand.

As humans, we normally represent numbers in the decimal system. Therefore,

counting the number from 1 to 10 is as simple as 1,2,3,4,5,6,7,8,9,10. On the other

hand, Computers represent all information in bits. Computers use the binary

number system in order to represent numbers with 0s and 1s. So, when a computer

counts from 1 to 10, it looks like this: 0001, 0010, 0011, 0100, 0101, 0110, 1000,

1001, 1010, 0111.

 3

(Electrical4U, 2020)

(Figure 1: What is the Binary Number System)

(Vivah, 2018)

(Figure 2: Binary Numbers)

 4

3.0 TYPES OF PROGRAMMING LANGUAGE

Programming language is classified into the following types;

• Machine language

• Assembly language

• High level language

 3.1 Machine Language

Computer only understand what is known as machine language otherwise called

binary numbers which is in form of O's and 1's. In order to execute any program

written in any programming language, the conversion to machine language is very

essential. Conversion is not required for any program written in machine language

as this can be executed directly on computer. The machine language program is

absolutely translation free and it saves time because it's execution is pretty fast.

Its disadvantages include;

• Hard finding errors in the machine language

• Time consuming

• Machine dependent: program developed or written for a particular computer

may not run on another type of computer

 5

3.2 Assembly Language

Assembly language was developed in order to make the programming process

easier. It is logically equivalent to machine language but the only added advantage

is that, it is easier and more convenient for people to read, write and better to

understand.

It uses symbolic notation to represent machine language instructions which are

called low level language because they are relatively closer to the machines. An

assembler translates assembly language instructions into a machine language

which makes it easier to understand and use. Unlike machine language, errors are

easily detected and located.

Assembly language comes with a few disadvantages though and they include;

• Machine dependent - the program which can be executed on a particular

machine depends solely on the architecture of that particular computer.

• Assembly language is considered to be hard to learn

• Programmer needs to have the hardware knowledge to create applications

• It is less efficient

• Execution time is more than machine language program

• Assembler is needed for conversion to machine language

 6

3.3 High level language

It consists of 'English-like words' and 'rules symbols' which are to be conformed

with while coding a program. Furthermore, interpreter or compilers which translate

high level language into machine language are required in order to convert these

programs into machine readable form.

A compiler reads the whole program written in high level language at a go and

translates it to machine language in lumpsum and if any error is encountered, such

error will be displayed on the computer screen. Interpreter on the other hand reads

and translates high level language program in line-by-line manner. It translates

statement from a source code into a machine code at a time, and runs it before

translating the next statement. The execution of the program is stopped when an

error is encountered and such error message is displayed on the computer screen.

Its advantages include;

• Readability

• Easier to learn and understand

• Portability between machines.

• Easy debugging

• Easy to find and correct errors

 7

Disadvantages

• Less efficient

• More execution times

 8

4.0 CATEGORIES OF PROGRAMMING LANGUAGES

Programming language is classified into the following Categories:

• Interpreted programming languages

• Functional programming languages

• Compiled programming languages

• Procedural programming languages

• Scripting programming language

• Markup programming languages

• Concurrent programming languages

• Object oriented programming languages

 4.1 Interpreted programming languages

Under this programming language, most of its instructions executes directly

without previously compiling a program into machine language instructions.

Examples include; Pascal and Python programming languages

4.2 Functional programming languages

This defines every computation bound to mathematical calculations as a

mathematical evaluation. Examples include; Clean and Haskel programming

languages

 9

4.3 Compiled Programming languages

This is a programming language whose execution are typically run by compilers

and not interpreters. It generates a machine code from the source code. Examples

include; "C", "C++", "C#" and "JAVA"

4.4 Procedural programming languages

It specifies the steps that the programs should take in order to get to an intended

state. Furthermore, it can be referred through a procedure call which makes the

programs to be structured. Examples include; Hyper talk and MATLAB

4.5 Scripting languages

These are programming languages which controls an application and can execute

independent of any other application. Mostly embedded in the application that they

control and are used to automate the communication with external program.

Examples include; Apple script and VB script

4.6 Markup languages

This is known as an artificial language that uses annotations to text that shows hoe

the text is to be displayed. Examples include; HTML and XML

 10

4.7 Concurrent programming language

It provides for the implementation of operation concurrently. This could be either

within a single computer or across multiple systems. Examples include; Joule and

Limbo

4.8 Object oriented programming language

This is paradigm based on the concept of objects which may contain data in the

form of procedures commonly known as methods. Examples include; Lava and

Moto

 11

5.0 ALGORITHMS

An algorithm is defined as a step-by-step procedure or set of instructions for

solving a problem or accomplishing a task. Every known computerized device

makes use of algorithms to perform its functions. It makes life easier by reducing

the time it takes to manually do things and also allow workers to be more proficient.

Furthermore, a programmer must make use of the five basic parts of an algorithm

to create a successful program. Firstly, he/she must describe or express the

problem at hand in mathematical terms before creating the formulas and

processes that creates results. Secondly, the programmer inputs the outcome

parameters, and then he/she executes the program repeatedly to test its

functionality and accuracy. The result is produced after the parameters has gone

through the set of instructions in the program.

(GeeksforGeeks, 2022)

(Figure 3: What is algorithm?)

 12

5.1 Properties of Algorithms

• Should be written in simple English

• Should be precise and unambiguous

• Instructions should not be repeated infinitely

• Should conclude after a finite number of steps

• Should have an end point

• Derived results should be obtained only after the algorithm terminates

5.2 Qualities of Algorithm

• Time

• Memory

• Accuracy

5.3 Advantages of Algorithms

• It is easy to understand

• Step-wise representation of a solution to a given problem

• Problem is broken down into smaller pieces

5.4 Disadvantages of Algorithms

• Time-consuming

• Branching and Looping statements are difficult to show in Algorithms

 13

6.0 STEPS TO DESIGNING AN ALGORITHM

The following pre-requisite are required in order to write an algorithm:

• Identify the problem this algorithm will solve

• Identify the constraints of the problem

• Determine the input to be accepted in order to solve the problem

• Consider the output to be generated after the problem has been solved

• Determine the solution to this problem

Let us consider the steps to be taken in a simple algorithm to add three numbers

and then print the sum either on a paper as a hard copy or on the screen as a soft

copy.

Step 1

• Identify the problem this algorithm will solve: Add 3 numbers and print their sum

• Identify the constraints of the problem: digits only

• Determine the input to be accepted in order to solve the problem: Add 3 digits

• Consider the output to be generated after the problem has been solved:

addition of 3 digits accepted as the input

• Determine the solution to this problem: adding 3 digits by making use of the

plus (+) operator

• Consider the algorithm to be written in order to solves the problem: algorithm

to be written in 3 different programming languages

 14

Step 2

Designing the algorithm with the help of above pre-requisites

START

- Declare 3 integer variables n1, n2 and n3

- Accept the three numbers to be added as inputs in variables n1, n2 and n3

- Declare integer variable res to store the summation of the 3 numbers

- Add the 3 numbers and then store the result in the variable res

- Then print the value of variable res

END

Step 3

In order to test the algorithm, I will write codes to implement it in three different

programming language namely; C, C++ and Python3

 15

6.1 C Programming Language

// C program to add three numbers with the help of the above designed algorithm

in step 2

#include <stdio.h>

 int main()

{

 // Variables to take the input of the 3 numbers

 int n1, n2, n3;

 // Variable to store the resultant sum

 int res;

 // Accept the 3 numbers as input

 printf("Enter the 1st number: ");

 scanf("%d", &n1);

 printf("%d\n", n1);

 printf("Enter the 2nd number: ");

 scanf("%d", &n2);

 printf("%d\n", n2);

 printf("Enter the 3rd number: ");

 scanf("%d", &n3);

 printf("%d\n", n3);

 16

 // Calculate the sum using the plus (+) operator

 // and store it in variable res

 res = n1 + n2 + n3;

 // Print the sum

 printf("\nSum of the 3 numbers is: %d", res);

 return 0;

}

Output

Enter the 1st number: 10

Enter the 2nd number: 30

Enter the 3rd number: 20

Sum of the 3 numbers is: 60

 17

 6.2 C++ Programming Language

// C++ program to add three numbers with the help of above designed algorithm in

step 2

#include <bits/stdc++.h>

using namespace std;

 int main()

{

 // Variables to take the input of the 3 numbers

 int n1, n2, n3;

 // Variable to store the resultant sum

 int res;

 // Accept the 3 numbers as input

 cout << "Enter the 1st number: ";

 cin >> n1;

 cout << " " << n1 << endl;

 cout << "Enter the 2nd number: ";

 cin >> n2;

 cout << " " << n2 << endl;

 cout << "Enter the 3rd number: ";

 cin >> n3;

 cout << " " << n3;

 18

// Calculate the sum using the plus (+) operator and then store it in variable

 res

 res = n1 + n2 + n3;

 // Print the sum

 cout << "\nSum of the 3 numbers is: "

 << res;

 return 0;

}

Output

Enter the 1st number: 10

Enter the 2nd number: 30

Enter the 3rd number: 20

Sum of the 3 numbers is: 60

 19

6.3 Python3 Programming Language

Python3 program to add three numbers with the help of above designed

 Algorithm in step 2

if __name__ == "__main__":

 # Variables to take the input of the 3 numbers

 n1 = n2 = n3 = 0

Variable to store the resultant sum

 res = 0

Accept the 3 numbers as input

 n1 = int(input("Enter the 1st number: "))

 n2 = int(input("Enter the 2nd number: "))

 n3 = int(input("Enter the 3rd number: "))

 # Calculate the sum using the plus (+) operator and store it in variable sum

 res = n1 + n2 + n3

 # Print the sum

 print("\nSum of the 3 numbers is:", res)

 20

Output

Enter the 1st number: 10

Enter the 2nd number: 30

Enter the 3rd number: 20

Sum of the 3 numbers is: 60

 21

7.0 NOTATIONS

7.1 FLOWCHARTS

According to Smartdraw, “Flowcharts use special shapes to represent different

types of actions or steps in a process. Lines and arrows show the sequence of the

steps, and the relationships among them. These are known as flowchart symbols”.

(Smartdraw, n.d.)

(Smartdraw, Common Flowchart Symbols, n.d.)

(Figure 4: Common Flowchart Symbols)

 22

7.2 Rules for drawing a flowchart

• Should be clear and easy to follow

• Must have a logical start and finish

• A process symbol should have one flow line

• A decision symbol should have one flow line

• A decision symbol may also have two or three flow lines

• A terminal symbol should have only one flow line

• Brief and precise description

• No intersection of flow lines

7.3 Advantages of flowchart

• Better Communication

• Effective Analysis

• Proper Documentation

• Efficient Coding

• Proper Debugging

• Efficient Program Maintenance

7.4 Disadvantages of flowchart

• Complex logic

• Alterations and Modifications

• Reproduction

• Too Costly

 23

8.0 PSEUDO CODE

According to Geeksforgeeks.org, “Pseudo code is a term which is often used in

programming and algorithm based fields. It is a methodology that allows the

programmer to represent the implementation of an algorithm. Simply, we can say

that it’s the cooked up representation of an algorithm. Often at times, algorithms

are represented with the help of pseudo codes as they can be interpreted by

programmers no matter what their programming background or knowledge is.

Pseudo code, as the name suggests, is a false code or a representation of code

which can be understood by even a layman with some school level programming

knowledge”. (Geeksforgeeks.org, 2021)

8.1 Features of Pseudo Code

• Consists of short and readable styled English languages

• No variable declaration and subroutines

• Programmer or non-programmer can easily understand it

• Sketch of the program before actual coding

• Not machine readable

• Cannot be compiled and executed

• No standard syntax

 24

8.2 Guidelines for writing Pseudo Code

• Write a statement per line

• Initial keyword must be capitalized

• Indentation to hierarchy

• Multiline structure must be terminated

• Statements language must be independent

 8.3 Common keywords used in Pseudo Code

• //: represents a comment

• BEGIN, END: begins the first statement and ends the last statement

• INPUT, GET, READ: data inputs keywords

• COMPUTE, CALCULATE: used to calculate the result of a given

expression

• ADD, SUBTRACT, INITIALIZE: used to add, subtract and initialize

• OUTPUT, PRINT, DISPLAY: used to display the output of the program

• IF, ELSE, ENDIF: decision making keywords

• WHILE, ENDWHILE: iterative statements keywords

• FOR, ENDFOR: iterative incremented/decremented keywords

 25

8.4 Program Samples

// Program to calculate the lowest common multiple for excessively

 long input values in JAVA

import java.util.*;

 public class LowestCommonMultiple {

 private static long

 lcmNaive(long numberOne, long numberTwo)

 {

 long lowestCommonMultiple;

 lowestCommonMultiple

 = (numberOne * numberTwo)

 / greatestCommonDivisor(numberOne,

 numberTwo);

 return lowestCommonMultiple;

 }

 private static long

 greatestCommonDivisor(long numberOne, long numberTwo)

 {

 if (numberTwo == 0)

 return numberOne;

 return greatestCommonDivisor(numberTwo,

 26

 numberOne % numberTwo);

 }

 public static void main(String args[])

 {

 Scanner scanner = new Scanner(System.in);

 System.out.println("Enter the inputs");

 long numberOne = scanner.nextInt();

 long numberTwo = scanner.nextInt();

 System.out.println(lcmNaive(numberOne, numberTwo));

 }

 }

Pseudo Code

// Program to calculate the lowest common multiple for excessively

 long input values in Pseudo Code

 function lcmNaive(Argument one, Argument two)

{

 Calculate the lowest common variable of Argument

 1 and Argument 2 by dividing their product by their

 Greatest common divisor product

 return lowest common multiple

end

} 27

function greatestCommonDivisor(Argument one, Argument two)

{

 if Argument two is equal to zero

 then return Argument one

 return the greatest common divisor

 end

}

 28

9.0 CONCLUSION

To be a successful software developer or programmer, an individual must possess

the skills of logical thoughts. This however takes considerable amount of practices

with a self-motivation much like a hobby. In my own opinion, today's software

engineering is much greater compared to that of about twenty years ago.

Presently, not only must you program an algorithm successfully, a Windows

interface must also be taken into consideration and well designed.

Moreover, teaching and learning programming on a personal computer requires a

Windows development environment which include; Visual Basic tools, C, C++, or

even FORTRAN. Visual Basic, C#, Python presents the best and the most

convenient environment to design Windows application interfaces in today's

programming world.

Consequently, many students are now being taught using various commercial

programs such as Microsoft’s Excel spreadsheet program. Matlab is another

popular commercial program which requires students to execute and implement

pseudo programming steps in order to obtain an answer to a problem.

Furthermore, how can an individual be motivated to become a software developer

in this highly modern computer environment?

 29

I am particularly concerned about the fact that; the number of talented software

developers is diminishing whilst the reliance on commercial and Windows-based

software grows.

Our dependency on commercial software today is too heavy and I am beginning

to wonder, is there is a pool of talented programmers who have developed their

skills through personal learning somewhere?, but I am nowhere closer to any

answer to this important question.

 30

10.0 BIBLIOGRAPHY

Electrical4U. (2020, October 22). Binary Number System: What is it? (Definition & Examples).

Retrieved from What is the Binary Number System?:

https://www.electrical4u.com/binary-number-system-binary-to-decimal-and-decimal-to-

binary-conversion/

GeeksforGeeks. (2022, January 13). Introduction to Algorithms. Retrieved from What is

Algorithm? Algorithm Basics: https://www.geeksforgeeks.org/introduction-to-

algorithms/

Geeksforgeeks.org. (2021, Sept 30). How to write a Pseudo Code? Retrieved from How to write

a Pseudo Code?: https://www.geeksforgeeks.org/how-to-write-a-pseudo-code/

Smartdraw. (n.d.). Common Flowchart Symbols. Retrieved from Flowchart Symbols:

https://www.smartdraw.com/flowchart/flowchart-

symbols.htm#:~:text=Flowcharts%20use%20special%20shapes%20to,are%20known%20

as%20flowchart%20symbols.

Smartdraw. (n.d.). Flowchart Symbols. Retrieved from Flowchart Symbols:

https://www.smartdraw.com/flowchart/flowchart-

symbols.htm#:~:text=Flowcharts%20use%20special%20shapes%20to,are%20known%20

as%20flowchart%20symbols.

Vivah, L. (2018, June 22). Learn How to Read Binary in 5 minutes. Retrieved from Learn How

to Read Binary in 5 minutes: https://medium.com/@LindaVivah/learn-how-to-read-

binary-in-5-minutes-dac1feb991e

 31

