
[Type here]

 OKELLO THOMAS

 STUDENT ID: UB69639SSO78773

 PROGRAM

 BACHELOR’S IN SOFTWARE ENGINEERING

 COURSE NAME

 (DISTRIBUTED SYSTEMS DEVELOPMENT)

 ATLANTIC INTERNATIONAL UNIVERSITY

 SUBMISSION PERIOD: FEBRUARY / 2022

[Type here]

Table of Contents

1.0 Introduction…………………………………………………………………………….1

2.0 Distributed and Parallel Computer Systems……………………………………….1-3

 2.1 Distributed System Properties…………………………………………………….3-4

 2.2 Reasons for Deploying Distributed Systems and Computing……………………..4

 2.3 Distributed Computing with Python……………………………………………...4-5

3.0 Distributed Systems and Computing Applications………………………………...5-6

4.0 Sharing of resources and resource managers……………………………………....6-8

5.0 User Requirements…………………………………………………………………..8-9

 5.1 Architectural Frameworks……………………………………………………….9-10

6.0 Computability and Computational Complexity Theories ……………………...10-13

 6.1 Measures of complexity………………………………………………………....13-14

 6.2 Related Computational Instances………………………………………………14-16

7.0 Coordinator Election………………………………………………………………....16

8.0 Conclusion……………………………………………………………………………..17

9.0 Bibliography…………………………………………………………………………...18

1

1.0 Introduction

Distributed computability of a networked system of computers is a computer science and obviously

software engineering related field which deals with the study and implementation of distributed

systems. In software development for large, complex, and distributed systems, agent systems are

seen as the next revolution (Paprzycki, Ganzha, & Essaaidi, 2012).

 A distributed system has its components located on several computers which are networked. The

size of a distributed system varies from a LAN (Local Area Networks) through MAP (Metropolitan

Area Networks) to WAN (Wide Area Networks).

They communicate and coordinate their activities by exchanging messages within this

interconnected system of computers according to the design goal (Wikipedia, Wikipedia, 2022).

A distributed system is therefore a collection of autonomous computers which are linked by a

network utilizing software to generate an integrated facility of computation.

A distributed program is a computer program which runs within a distributed system and

distributed programming is the process of writing those programs. Distributed computing is

employing distributed systems to resolve computing instances. High performance for shared

memory multiprocessor parallel computing, employs parallel algorithms while distributed

algorithms coordinate large scale distributed systems. Distributed computing is the simultaneous

utilization of more than a computer to resolve a computational problem (Pierfederici, 2016).

2.0 Distributed and Parallel Computing Systems

There is no clear distinction between parallel and distributed computing but possibly one can

define and classify concurrent systems as parallel or distributed by using the parameters below:

2

• For parallel computing systems, all processors may have access to a shared memory for

information exchange between processors.

• For distributed computing system, each processor has access to its individual memory

known as distributed memory for information exchange between processors.

This can be depicted by the figures below showing differences between parallel and distributed

systems of computing.

Distributed System I

 Distributed system II

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor

3

Distributed system I is depicted as a network topology where individual nodes are computers and

the connections between the nodes are communication links. In more detail, distributed system

II is depicted where each computer is localized with its memory and through the communication

links information can be exchanged between the nodes.

Parallel System

The Parallel system above depicts individual processors directly accessing a shared memory.

High performance in parallel computing where multiple processors have direct access to shared

memory employ parallel algorithms while large scale coordination of distributed systems utilize

distributed algorithms.

2.1 Distributed System Properties

The following are important attributes of distributed systems:

• Sharing of resources and resource managers

• Openness

• Concurrency

• Scalability

 Memory

Processor Processor

4

• Fault-tolerance

• Transparency

2.2 Reasons for Deploying Distributed Systems and Computing

Reasons may include the following amongst others:

If running an application which requires the use of a communication network that connects several

computers. The nature of this application being developed requires a distributed system. For

instance, computers producing data in each physical location and required in another location.

Example: instant messaging and video conferencing applications.

It is cost effective to obtain the desired level of performance by utilizing a cluster of several low-

end computers compared to a single high-end computer. A distributed computing system provides

more reliability and expandability than a non-distributed computing system as it presents failure

tolerance and relatively easy to extend and manage. Example: rendering of 3D animation movies

like Pixar and DreamWorks.

2.3 Distributed Computing with Python

Threads are typical tools employed in parallel applications. On Python systems, threads present

considerable limitations prompting programmers to launch subprocesses by forking. These

subprocesses substitute or complement threads by running alongside the main application process.

There are two architectural techniques employed to overcome these thread limitations.

• Multithreaded programming

• Multiprocessing

5

The two techniques are subject of choice depending on the desired level of computability. This

means that, there are several situations where multiple processing is preferred to multiple threading

and vice versa. These computability executions both run in a single computer as it has been

ascertained earlier that there is no clear distinction between parallel and distributed computing.

An example of a shared-memory architecture is a multithreaded application, and a distributed-

memory architecture is a multiprocessor application. CPU-GPU combination is yet another

example of an interesting distributed system where graphics cards are very sophisticated

computers in their own ways.

For many compute-intensive problems, CPU-GPU interactions generate a highly parallel and

compelling performance in addition to displaying images on the screen. For programmers to best-

employ GPUs for general purpose-computing, tools and libraries are available.

3.0 Distributed Systems and Computing Applications

Examples of distributed systems and applications includes amongst others, the following

(Kuzmiakova, 2020):

❖ WAN (Network) applications such as:

• Multimedia information access and conferencing applications

• Multimedia/teleconferencing over networks

• The world wide web and peer-to-peer networks

• Electronic mail

• Bulletin board systems

• Netnews (group discussions on single subject)

6

• Gopher (text retrieval service)

❖ Distributed Unix software

❖ Telecommunication Networks

• Telephone networks and cellular networks

• Wireless sensor networks

• Routing algorithms

❖ Network Applications (Distributed information processing systems)

• Banking Systems

• Airline reservation system

❖ Real-time process control systems

• Aircraft control systems

• Industrial control systems

❖ Parallel Computation.

• Scientific computing, cluster computing, grid computing and cloud computing

• Distributed rendering in computer graphics

4.0 Sharing of resources and resource managers

Sharing of computer hardware and software resources encompasses components such as disks and

printers. Software resources include components such as files, windows, and data objects.

Hardware resource sharing is useful for convenience and cost reduction while software sharing

like for instance data sharing is for consistency in libraries and compilers, information exchange

in databases and cooperative work such as groupware.

7

A set of resources is managed by a software module. Server processes in a client-server framework

function as resource managers for a set of resources and clients. Every resource is linked to its own

management policies and methods. Consider the following analytical insight of resource sharing

and management.

Openness

An open distributed system has published specifications. Uniform interprocess communications

and published interfaces for access are provided. All vendor conformity to published standards

must be tested and certified if users are to be protected from the responsibility of troubleshooting

system integration problems.

Concurrency

This is where multiple programs and processing are running. This can be parallel executions in a

distributed system. Many users accessing the same resources, applications and multiple servers

responding to client requests.

Scalability

This how the system responds to expansion. The software should be resilient and robust to handle

growth and therefore centralisation to support scalability should be avoided.

Fault-tolerance

Due to computer failure, hardware redundancy and software recovery is necessary.

Transparency

Transparency of the following key factors:

8

• Access

• Location

• Concurrency

• Replication

• Failure

• Migration

• Performance

• Scaling

The key design goals of the distributed systems include:

• High performance

• Reliability

• Scalability

• Consistency

• Security

5.0 User Requirements

The user requirements specification includes the following:

Functionality

Minimally, the distributed system services should be accessed through the functions of single

computer such as hardware resource sharing and use of distributed resources for parallel

processing and fault-tolerance cooperative working environments.

9

Reconfigurability

Distributed systems can be subjected to short- and long-term changes and hence must be corrected

accordingly. This can be accomplished by exploring a few options briefly mentioned below.

Through troubleshooting, replacement, advancement of services, changed roles of machines and

resources on existing machines.

Such dynamics for short term may include:

• Failed processes or components

• Computational load shift

• Network overhead increase

For general long-term changes may include replacement and advancement of new machines and

services including machine role changes and resource changes on existing machines.

Quality of Service

Needs of the users should be well defined and guaranteed through, distributed system computing

performance, reliability, availability, and security.

5.1 Architectural Frameworks

Variations of hardware and software frameworks exist and can be employed for distributed

computing. Lower levels necessitate interconnecting multiple CPUs with the designed network

framework disregarding the fact that a network is printed onto the circuit board or a build-up of

connected devices and cables. Higher levels necessitate interconnecting processes that are running

on those CPUs with the required communication system.

10

Several architectural frameworks on which distributed programs can be installed and run, exist.

They are outlined and briefly explained below:

• Client-server model

• Three-tier model

• n-tier model

• Peer-to-peer model

Client-server model is an architectural framework where the client computer communicates to

the server, and it responds to the client by displaying the output to the users.

Three-tier model is a framework which initiates the stateless clients to be utilized by moving the

client intelligence to the middle tier and this simplifies application deployment for most web

applications as they are three-tier.

n-tier model is a framework which typically are web applications that execute their functionalities

by forwarding their requests to the application servers.

Peer-to-peer model is a model whereby peers (computers) serve as both clients and servers and

tasks are uniformly distributed amongst the computers called peers. Examples are BitTorrent and

bitcoin network.

A central database architectural framework is an alternative that can be employed by utilizing a

shared database to enable distributed computing to be executed without any form of direct

interprocess communication. Centralised database architecture offers a relational processing

analytics in a schematic architecture allowing for a live environment transmission enabling

distributed computing functionalities both within and beyond the settings of networked database.

11

6.0 Computability and Computational Complexity Theories

Computability and computational theories are a computer science concepts which aid in

understanding how computational problems known as problem instances can be resolved by

efficiently employing a computer. Algorithms are computer programs designed to generate a

correct solution to computational problems.

These computer programs run on the general-purpose machines or computers by reading the

problem instance from input, performs computational activities and generates appropriate solution

as output. Turing machines are random access machines employed as abstract models of a

sequential general-purpose computer that can execute an algorithm.

The following section will discuss specifically issues on multiple computers although these issues

are the same for concurrent processes running on one computer. The enlisted algorithm

frameworks below, will be briefly discussed.

• Shared-Memory framework parallel algorithms

• Message-Passing framework parallel algorithms

• Message-Passing framework distributed algorithms

Shared-Memory framework parallel algorithms

The designer of the algorithm will choose the program executed by each processor and all

processors access the shared memory. Parallel random-access machines (PRAM) are a theoretical

model that is employed, and additionally classical PRAM framework takes synchronous access to

the shared memory.

12

If the underlying operating system encapsulates the communication between nodes and

virtually unifies the memory across all individual systems, then shared-memory

programs(parallel systems) can be extended to distributed systems.

Compare-and-Swap (CAS) is such an example of a model of asynchronous shared memory which

is closer to the behavior of real-world multiprocessor machines with the capability of considering

the use of machine instructions.

Message-Passing framework parallel algorithms

The designer of the algorithm chooses the network topology and the program executed by each

computer. Boolean circuits and sorting networks are examples of such models that can be

employed. A Boolean circuit can be viewed as a computer network where each gate is a computer

that runs a completely simple computer program and similarly a sorting network can be viewed as

a computer network where each computer is a comparator.

Message-Passing framework distributed algorithms

The designer of the algorithm only chooses the computer program, and this same program runs on

all computers. Regardless of the network topology, the system must work correctly. A graph is a

commonly employed framework with one finite-state machine per node. For distributed

algorithms, problem instances are typically related to graph which gives a description of the

computer network topology.

There is considerable interaction between distributed and parallel algorithms although the two

algorithms have different points of focus. For instance, the Cole-Vishkin algorithm employed in

13

graph coloring, initially was presented as a parallel algorithm but can also be used as a distributed

algorithm technique.

The implementation of parallel algorithm can be achieved in parallel systems using shared memory

or distributed systems using message passing. The boundary between parallel and distributed

algorithms (take a suitable network versus a run in any given network) lies in a different place

compared to the boundary between parallel and distributed systems (take a shared memory versus

message passing).

6.1 Measures of complexity

In addition to time and space, the number of computers is considerably another resource but always

there is a trade-off between the number of computers and the running time. The problem instance

can be resolved faster if more computers are running in parallel and if the decision problem is

resolved in polylogarithmic time using a polynomial number of processors, then the problem is in

class NC (Nick’s Class) (Wikipedia, Wikipedia, 2022). The class NC can be defined by using the

PRAM formalization or Boolean circuits. Boolean circuits can be efficiently simulated by PRAM

machines and vice versa.

Emphasis is usually put on communication operations other than computational steps. Probably,

the simplest framework of distributed computing is asynchronous system where all nodes operate

in a lock state setting commonly referred to as local model. During every communication round,

all nodes in parallel will:

• Receive the latest messages from their neighbors

• Perform arbitrary local computations

14

• Send new messages to the neighbors

In this kind of system, the number of synchronous communication rounds required to complete

the task is the central complexity measure. This complexity measure is closely related to the

diameter of the network. Considering D to be the diameter of the network in one situation, any

problem instance can be solved trivially in a synchronous distributed system in the approximation

of 2D communication rounds by gathering all information in one location(D-rounds), resolve the

problem and gives feedback to each node about the given solution.

By considering the running time of the algorithm in another situation, to be smaller than the D

communication round, the network nodes will generate their output without having the information

about distant parts of the network and so network nodes will make consistent global decisions

based on the available information in their local D-neighborhood.

Most distributed algorithm run time, are smaller than the D-rounds and one central research

question in this field is understanding which problem can be resolved by such algorithms. In a

network size, a typical algorithm which resolves a computational problem instance in a

polylogarithmic time is efficient in this model.

Regarding communications complexity, the total number of bits transmitted in the network, is

another commonly used measure. This concept is common with the congest (B) model also defined

as the local model but where single messages can only contain the B bits.

6.2 Related Computational Instances

From the traditional dimensions of computational instances, a user asks a question, a computer or

distributed system processes the question, generates an answer, and terminates the process but

15

there are other problem instances where the distributed system is required to continuously

coordinate the use of shared resources so that conflicts or deadlocks do not occur. Such problem

instances include:

• Dining philosophers’ problems is a problem example used concurrent algorithm design to

illustrate synchronization issues and issue-resolving techniques (Wikipedia, Wikipedia,

2022).

• Mutual exclusion problem is concurrency control property meant to prevent race

conditions. When the concurrent thread of execution is already accessing the critical

section, another thread of execution should never enter this critical section (Wikipedia,

2021).

Distributed computing is also subject to other major challenges such as those related to fault

tolerance and includes amongst others:

Consensus problem resolution in distributed and multi-agent computing is achieving overall

system reliability in the presence of several faulty processes by coordinating processes to agree on

some data value that is needed during computation (Wikipedia, Wikipedia, 2022).

Byzantine fault tolerance is distributed computing system condition where components may fail

and there is no perfect information on failure (Wikipedia, Wikipedia, 2022).

Self-stabilization is a distributed computing system fault-tolerance concept that given any initial

state, a self-stabilizing distributed system will end up in a correct state in a finite number of steps

of execution (Wikipedia, Wikipedia, 2022).

16

Considerable research work is being carried on the asynchronous nature of distributed systems and

covering concepts such as:

• Synchronizers which are employed in asynchronous systems to run synchronous

algorithms.

• Synchronization of clock algorithms which provide a global consistent physical time

stamp.

• Logical clock application provides a casual happened-before event ordering.

7.0 Coordinator Election

This is the process of assigning a particular process to be the organizer of a given task distributed

amongst several nodes. Prior to running the task, all network nodes neither know which node will

serve as the leader of the task nor communicate with the current coordinator. After running the

leader election algorithm, all the network nodes are reorganized, and a particular unique node is

recognized as the task coordinator = leader election.

For the network nodes to decide on which one of them will enter the coordinator state, the

network nodes, use some method to communicate amongst themselves to break the symmetry

amongst them. As an example, nodes may have unique and comparable identities and the nodes

will compare these identities. The node with the highest identity assumes the coordinator role.

In distributed computing, coordinator algorithms are designed to be cost effective in terms of

transmission of total bytes and time. The algorithm for general undirected graphs as suggested by

Gallager, Humblet and Spira presents a strong impact on the design of distributed algorithms which

won the Dijkstra Prize.

17

8.0 Conclusion

Distributed computing focusses on application of a designed computational algorithm to solve a

computation problem in relatively efficient way. Decision can be taken on which algorithm to be

employed for execution in large networks as there is no efficient centralized, parallel, or distributed

algorithm.

A distributed system may be subject to common goal like solving a large computational problem

where users view the collection of autonomous processors as a single unit. A computer may have

a user specified needs and the distributed system will be designed to coordinate the utilization of

shared resources by offering communication services to the users.

The most complex structure of the IEC 61499 architecture of distributed systems is system

configurations. In this context, the description of system configuration is a set of devices(instances

of predefined device types) populated by functionality blocks in one or several applications. It

encompasses device types of instances along with block applications functionalities. Application

and system can be summarized as below:

Application = Functional Block Network

System = Communication Network + Devices + Process/Machines

18

9.0 Bibliography

Kuzmiakova, A. (2020). Computer Science and Web Technologies. Ashland: Arcler Press.

Paprzycki, M., Ganzha, M., & Essaaidi, M. (2012). Software Agents,Agent Systems and their

Applications. Amsterdam: IOS Press.

Pierfederici, F. (2016). Distributed Computing with Python. Birmingham: UK : Packt

Publishing.

Wikipedia. (2021, August 27). Wikipedia. Retrieved from en.wikipedia.org:

https://en.wikipedia.org/wiki/Mutual_exclusion

Wikipedia. (2022, January 28). Wikipedia. Retrieved from en.wikipedia.org:

https://en.wikipedia.org/wiki/Dining_philosophers_problem

Wikipedia. (2022, January 29). Wikipedia. Retrieved from en.wikipedia.org:

https://en.wikipedia.org/wiki/Consensus_(computer_science)

Wikipedia. (2022, February 1). Wikipedia. Retrieved from en.wikipedia.org:

https://en.wikipedia.org/wiki/Byzantine_fault

Wikipedia. (2022, January 30). Wikipedia. Retrieved from en.wikipedia.org:

https://en.wikipedia.org/wiki/Self-stabilization

Wikipedia. (2022, January 3). Wikipedia. Retrieved from en.wikipedia.org:

https://en.wikipedia.org/wiki/NC_(complexity)

Wikipedia. (2022, January 12). Wikipedia. Retrieved from en.wikipedia.org:

https://en.wikipedia.org/wiki/Distributed_computing#Introductio

19

